| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfcndac | Structured version Visualization version Unicode version | ||
| Description: Axiom of Choice ax-ac 9281, reproved from conditionless ZFC axioms. (Contributed by NM, 15-Aug-2003.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| zfcndac |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axacnd 9434 |
. . 3
| |
| 2 | 19.3v 1897 |
. . . . . 6
| |
| 3 | 2 | imbi1i 339 |
. . . . 5
|
| 4 | 3 | 2albii 1748 |
. . . 4
|
| 5 | 4 | exbii 1774 |
. . 3
|
| 6 | 1, 5 | mpbi 220 |
. 2
|
| 7 | equequ2 1953 |
. . . . . . . . . 10
| |
| 8 | 7 | bibi2d 332 |
. . . . . . . . 9
|
| 9 | elequ2 2004 |
. . . . . . . . . . . . 13
| |
| 10 | 9 | anbi2d 740 |
. . . . . . . . . . . 12
|
| 11 | elequ2 2004 |
. . . . . . . . . . . . 13
| |
| 12 | elequ1 1997 |
. . . . . . . . . . . . 13
| |
| 13 | 11, 12 | anbi12d 747 |
. . . . . . . . . . . 12
|
| 14 | 10, 13 | anbi12d 747 |
. . . . . . . . . . 11
|
| 15 | 14 | cbvexv 2275 |
. . . . . . . . . 10
|
| 16 | 15 | bibi1i 328 |
. . . . . . . . 9
|
| 17 | 8, 16 | syl6bb 276 |
. . . . . . . 8
|
| 18 | 17 | albidv 1849 |
. . . . . . 7
|
| 19 | elequ1 1997 |
. . . . . . . . . . . 12
| |
| 20 | 19 | anbi1d 741 |
. . . . . . . . . . 11
|
| 21 | elequ1 1997 |
. . . . . . . . . . . 12
| |
| 22 | 21 | anbi1d 741 |
. . . . . . . . . . 11
|
| 23 | 20, 22 | anbi12d 747 |
. . . . . . . . . 10
|
| 24 | 23 | exbidv 1850 |
. . . . . . . . 9
|
| 25 | equequ1 1952 |
. . . . . . . . 9
| |
| 26 | 24, 25 | bibi12d 335 |
. . . . . . . 8
|
| 27 | 26 | cbvalv 2273 |
. . . . . . 7
|
| 28 | 18, 27 | syl6bb 276 |
. . . . . 6
|
| 29 | 28 | cbvexv 2275 |
. . . . 5
|
| 30 | 29 | imbi2i 326 |
. . . 4
|
| 31 | 30 | 2albii 1748 |
. . 3
|
| 32 | 31 | exbii 1774 |
. 2
|
| 33 | 6, 32 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-reg 8497 ax-ac 9281 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-eprel 5029 df-fr 5073 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |