| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inf3lem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8532 for detailed description. In the proof, we invoke the Axiom of Regularity in the form of zfreg 8500. (Contributed by NM, 29-Oct-1996.) |
| Ref | Expression |
|---|---|
| inf3lem.1 |
|
| inf3lem.2 |
|
| inf3lem.3 |
|
| inf3lem.4 |
|
| Ref | Expression |
|---|---|
| inf3lem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 |
. . . 4
| |
| 2 | inf3lem.2 |
. . . 4
| |
| 3 | inf3lem.3 |
. . . 4
| |
| 4 | inf3lem.4 |
. . . 4
| |
| 5 | 1, 2, 3, 4 | inf3lemd 8524 |
. . 3
|
| 6 | 1, 2, 3, 4 | inf3lem2 8526 |
. . . 4
|
| 7 | 6 | com12 32 |
. . 3
|
| 8 | pssdifn0 3944 |
. . 3
| |
| 9 | 5, 7, 8 | syl6an 568 |
. 2
|
| 10 | vex 3203 |
. . . . 5
| |
| 11 | 10 | difexi 4809 |
. . . 4
|
| 12 | zfreg 8500 |
. . . 4
| |
| 13 | 11, 12 | mpan 706 |
. . 3
|
| 14 | eldifi 3732 |
. . . . . . . . . 10
| |
| 15 | inssdif0 3947 |
. . . . . . . . . . 11
| |
| 16 | 15 | biimpri 218 |
. . . . . . . . . 10
|
| 17 | 14, 16 | anim12i 590 |
. . . . . . . . 9
|
| 18 | vex 3203 |
. . . . . . . . . 10
| |
| 19 | fvex 6201 |
. . . . . . . . . 10
| |
| 20 | 1, 2, 18, 19 | inf3lema 8521 |
. . . . . . . . 9
|
| 21 | 17, 20 | sylibr 224 |
. . . . . . . 8
|
| 22 | 1, 2, 3, 4 | inf3lemc 8523 |
. . . . . . . . 9
|
| 23 | 22 | eleq2d 2687 |
. . . . . . . 8
|
| 24 | 21, 23 | syl5ibr 236 |
. . . . . . 7
|
| 25 | eldifn 3733 |
. . . . . . . . 9
| |
| 26 | 25 | adantr 481 |
. . . . . . . 8
|
| 27 | 26 | a1i 11 |
. . . . . . 7
|
| 28 | 24, 27 | jcad 555 |
. . . . . 6
|
| 29 | eleq2 2690 |
. . . . . . . . 9
| |
| 30 | 29 | biimprd 238 |
. . . . . . . 8
|
| 31 | iman 440 |
. . . . . . . 8
| |
| 32 | 30, 31 | sylib 208 |
. . . . . . 7
|
| 33 | 32 | necon2ai 2823 |
. . . . . 6
|
| 34 | 28, 33 | syl6 35 |
. . . . 5
|
| 35 | 34 | expd 452 |
. . . 4
|
| 36 | 35 | rexlimdv 3030 |
. . 3
|
| 37 | 13, 36 | syl5 34 |
. 2
|
| 38 | 9, 37 | syldc 48 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 |
| This theorem is referenced by: inf3lem4 8528 |
| Copyright terms: Public domain | W3C validator |