MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem3 Structured version   Visualization version   Unicode version

Theorem inf3lem3 8527
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8532 for detailed description. In the proof, we invoke the Axiom of Regularity in the form of zfreg 8500. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1  |-  G  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
inf3lem.2  |-  F  =  ( rec ( G ,  (/) )  |`  om )
inf3lem.3  |-  A  e. 
_V
inf3lem.4  |-  B  e. 
_V
Assertion
Ref Expression
inf3lem3  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( A  e.  om  ->  ( F `  A
)  =/=  ( F `
 suc  A )
) )
Distinct variable group:    x, y, w
Allowed substitution hints:    A( x, y, w)    B( x, y, w)    F( x, y, w)    G( x, y, w)

Proof of Theorem inf3lem3
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 inf3lem.1 . . . 4  |-  G  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
2 inf3lem.2 . . . 4  |-  F  =  ( rec ( G ,  (/) )  |`  om )
3 inf3lem.3 . . . 4  |-  A  e. 
_V
4 inf3lem.4 . . . 4  |-  B  e. 
_V
51, 2, 3, 4inf3lemd 8524 . . 3  |-  ( A  e.  om  ->  ( F `  A )  C_  x )
61, 2, 3, 4inf3lem2 8526 . . . 4  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( A  e.  om  ->  ( F `  A
)  =/=  x ) )
76com12 32 . . 3  |-  ( A  e.  om  ->  (
( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( F `  A
)  =/=  x ) )
8 pssdifn0 3944 . . 3  |-  ( ( ( F `  A
)  C_  x  /\  ( F `  A )  =/=  x )  -> 
( x  \  ( F `  A )
)  =/=  (/) )
95, 7, 8syl6an 568 . 2  |-  ( A  e.  om  ->  (
( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( x  \  ( F `  A )
)  =/=  (/) ) )
10 vex 3203 . . . . 5  |-  x  e. 
_V
1110difexi 4809 . . . 4  |-  ( x 
\  ( F `  A ) )  e. 
_V
12 zfreg 8500 . . . 4  |-  ( ( ( x  \  ( F `  A )
)  e.  _V  /\  ( x  \  ( F `  A )
)  =/=  (/) )  ->  E. v  e.  (
x  \  ( F `  A ) ) ( v  i^i  ( x 
\  ( F `  A ) ) )  =  (/) )
1311, 12mpan 706 . . 3  |-  ( ( x  \  ( F `
 A ) )  =/=  (/)  ->  E. v  e.  ( x  \  ( F `  A )
) ( v  i^i  ( x  \  ( F `  A )
) )  =  (/) )
14 eldifi 3732 . . . . . . . . . 10  |-  ( v  e.  ( x  \ 
( F `  A
) )  ->  v  e.  x )
15 inssdif0 3947 . . . . . . . . . . 11  |-  ( ( v  i^i  x ) 
C_  ( F `  A )  <->  ( v  i^i  ( x  \  ( F `  A )
) )  =  (/) )
1615biimpri 218 . . . . . . . . . 10  |-  ( ( v  i^i  ( x 
\  ( F `  A ) ) )  =  (/)  ->  ( v  i^i  x )  C_  ( F `  A ) )
1714, 16anim12i 590 . . . . . . . . 9  |-  ( ( v  e.  ( x 
\  ( F `  A ) )  /\  ( v  i^i  (
x  \  ( F `  A ) ) )  =  (/) )  ->  (
v  e.  x  /\  ( v  i^i  x
)  C_  ( F `  A ) ) )
18 vex 3203 . . . . . . . . . 10  |-  v  e. 
_V
19 fvex 6201 . . . . . . . . . 10  |-  ( F `
 A )  e. 
_V
201, 2, 18, 19inf3lema 8521 . . . . . . . . 9  |-  ( v  e.  ( G `  ( F `  A ) )  <->  ( v  e.  x  /\  ( v  i^i  x )  C_  ( F `  A ) ) )
2117, 20sylibr 224 . . . . . . . 8  |-  ( ( v  e.  ( x 
\  ( F `  A ) )  /\  ( v  i^i  (
x  \  ( F `  A ) ) )  =  (/) )  ->  v  e.  ( G `  ( F `  A )
) )
221, 2, 3, 4inf3lemc 8523 . . . . . . . . 9  |-  ( A  e.  om  ->  ( F `  suc  A )  =  ( G `  ( F `  A ) ) )
2322eleq2d 2687 . . . . . . . 8  |-  ( A  e.  om  ->  (
v  e.  ( F `
 suc  A )  <->  v  e.  ( G `  ( F `  A ) ) ) )
2421, 23syl5ibr 236 . . . . . . 7  |-  ( A  e.  om  ->  (
( v  e.  ( x  \  ( F `
 A ) )  /\  ( v  i^i  ( x  \  ( F `  A )
) )  =  (/) )  ->  v  e.  ( F `  suc  A
) ) )
25 eldifn 3733 . . . . . . . . 9  |-  ( v  e.  ( x  \ 
( F `  A
) )  ->  -.  v  e.  ( F `  A ) )
2625adantr 481 . . . . . . . 8  |-  ( ( v  e.  ( x 
\  ( F `  A ) )  /\  ( v  i^i  (
x  \  ( F `  A ) ) )  =  (/) )  ->  -.  v  e.  ( F `  A ) )
2726a1i 11 . . . . . . 7  |-  ( A  e.  om  ->  (
( v  e.  ( x  \  ( F `
 A ) )  /\  ( v  i^i  ( x  \  ( F `  A )
) )  =  (/) )  ->  -.  v  e.  ( F `  A ) ) )
2824, 27jcad 555 . . . . . 6  |-  ( A  e.  om  ->  (
( v  e.  ( x  \  ( F `
 A ) )  /\  ( v  i^i  ( x  \  ( F `  A )
) )  =  (/) )  ->  ( v  e.  ( F `  suc  A )  /\  -.  v  e.  ( F `  A
) ) ) )
29 eleq2 2690 . . . . . . . . 9  |-  ( ( F `  A )  =  ( F `  suc  A )  ->  (
v  e.  ( F `
 A )  <->  v  e.  ( F `  suc  A
) ) )
3029biimprd 238 . . . . . . . 8  |-  ( ( F `  A )  =  ( F `  suc  A )  ->  (
v  e.  ( F `
 suc  A )  ->  v  e.  ( F `
 A ) ) )
31 iman 440 . . . . . . . 8  |-  ( ( v  e.  ( F `
 suc  A )  ->  v  e.  ( F `
 A ) )  <->  -.  ( v  e.  ( F `  suc  A
)  /\  -.  v  e.  ( F `  A
) ) )
3230, 31sylib 208 . . . . . . 7  |-  ( ( F `  A )  =  ( F `  suc  A )  ->  -.  ( v  e.  ( F `  suc  A
)  /\  -.  v  e.  ( F `  A
) ) )
3332necon2ai 2823 . . . . . 6  |-  ( ( v  e.  ( F `
 suc  A )  /\  -.  v  e.  ( F `  A ) )  ->  ( F `  A )  =/=  ( F `  suc  A ) )
3428, 33syl6 35 . . . . 5  |-  ( A  e.  om  ->  (
( v  e.  ( x  \  ( F `
 A ) )  /\  ( v  i^i  ( x  \  ( F `  A )
) )  =  (/) )  ->  ( F `  A )  =/=  ( F `  suc  A ) ) )
3534expd 452 . . . 4  |-  ( A  e.  om  ->  (
v  e.  ( x 
\  ( F `  A ) )  -> 
( ( v  i^i  ( x  \  ( F `  A )
) )  =  (/)  ->  ( F `  A
)  =/=  ( F `
 suc  A )
) ) )
3635rexlimdv 3030 . . 3  |-  ( A  e.  om  ->  ( E. v  e.  (
x  \  ( F `  A ) ) ( v  i^i  ( x 
\  ( F `  A ) ) )  =  (/)  ->  ( F `
 A )  =/=  ( F `  suc  A ) ) )
3713, 36syl5 34 . 2  |-  ( A  e.  om  ->  (
( x  \  ( F `  A )
)  =/=  (/)  ->  ( F `  A )  =/=  ( F `  suc  A ) ) )
389, 37syldc 48 1  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( A  e.  om  ->  ( F `  A
)  =/=  ( F `
 suc  A )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   U.cuni 4436    |-> cmpt 4729    |` cres 5116   suc csuc 5725   ` cfv 5888   omcom 7065   reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by:  inf3lem4  8528
  Copyright terms: Public domain W3C validator