MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfregfr Structured version   Visualization version   Unicode version

Theorem zfregfr 8509
Description: The epsilon relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.)
Assertion
Ref Expression
zfregfr  |-  _E  Fr  A

Proof of Theorem zfregfr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 5099 . 2  |-  (  _E  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  y
)  =  (/) ) )
2 vex 3203 . . . . 5  |-  x  e. 
_V
3 zfreg 8500 . . . . 5  |-  ( ( x  e.  _V  /\  x  =/=  (/) )  ->  E. y  e.  x  ( y  i^i  x )  =  (/) )
42, 3mpan 706 . . . 4  |-  ( x  =/=  (/)  ->  E. y  e.  x  ( y  i^i  x )  =  (/) )
5 incom 3805 . . . . . 6  |-  ( y  i^i  x )  =  ( x  i^i  y
)
65eqeq1i 2627 . . . . 5  |-  ( ( y  i^i  x )  =  (/)  <->  ( x  i^i  y )  =  (/) )
76rexbii 3041 . . . 4  |-  ( E. y  e.  x  ( y  i^i  x )  =  (/)  <->  E. y  e.  x  ( x  i^i  y
)  =  (/) )
84, 7sylib 208 . . 3  |-  ( x  =/=  (/)  ->  E. y  e.  x  ( x  i^i  y )  =  (/) )
98adantl 482 . 2  |-  ( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  ( x  i^i  y )  =  (/) )
101, 9mpgbir 1726 1  |-  _E  Fr  A
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915    _E cep 5028    Fr wfr 5070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-eprel 5029  df-fr 5073
This theorem is referenced by:  en2lp  8510  dford2  8517  noinfep  8557  zfregs  8608  bnj852  30991  dford5reg  31687  trelpss  38659
  Copyright terms: Public domain W3C validator