MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmval Structured version   Visualization version   Unicode version

Theorem zlmval 19864
Description: Augment an abelian group with vector space operations to turn it into a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
zlmval.w  |-  W  =  ( ZMod `  G
)
zlmval.m  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
zlmval  |-  ( G  e.  V  ->  W  =  ( ( G sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  .x.  >. )
)

Proof of Theorem zlmval
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 zlmval.w . 2  |-  W  =  ( ZMod `  G
)
2 elex 3212 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
3 oveq1 6657 . . . . 5  |-  ( g  =  G  ->  (
g sSet  <. (Scalar `  ndx ) ,ring >. )  =  ( G sSet  <. (Scalar `  ndx ) ,ring >. ) )
4 fveq2 6191 . . . . . . 7  |-  ( g  =  G  ->  (.g `  g )  =  (.g `  G ) )
5 zlmval.m . . . . . . 7  |-  .x.  =  (.g
`  G )
64, 5syl6eqr 2674 . . . . . 6  |-  ( g  =  G  ->  (.g `  g )  =  .x.  )
76opeq2d 4409 . . . . 5  |-  ( g  =  G  ->  <. ( .s `  ndx ) ,  (.g `  g ) >.  =  <. ( .s `  ndx ) ,  .x.  >. )
83, 7oveq12d 6668 . . . 4  |-  ( g  =  G  ->  (
( g sSet  <. (Scalar ` 
ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  (.g `  g ) >.
)  =  ( ( G sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) , 
.x.  >. ) )
9 df-zlm 19853 . . . 4  |-  ZMod  =  ( g  e.  _V  |->  ( ( g sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  (.g `  g ) >.
) )
10 ovex 6678 . . . 4  |-  ( ( G sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) , 
.x.  >. )  e.  _V
118, 9, 10fvmpt 6282 . . 3  |-  ( G  e.  _V  ->  ( ZMod `  G )  =  ( ( G sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) , 
.x.  >. ) )
122, 11syl 17 . 2  |-  ( G  e.  V  ->  ( ZMod `  G )  =  ( ( G sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) , 
.x.  >. ) )
131, 12syl5eq 2668 1  |-  ( G  e.  V  ->  W  =  ( ( G sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  .x.  >. )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183   ` cfv 5888  (class class class)co 6650   ndxcnx 15854   sSet csts 15855  Scalarcsca 15944   .scvsca 15945  .gcmg 17540  ℤringzring 19818   ZModczlm 19849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-zlm 19853
This theorem is referenced by:  zlmlem  19865  zlmsca  19869  zlmvsca  19870  zlmds  30008  zlmtset  30009
  Copyright terms: Public domain W3C validator