![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0grsubgr | Structured version Visualization version GIF version |
Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) |
Ref | Expression |
---|---|
0grsubgr | ⊢ (𝐺 ∈ 𝑊 → ∅ SubGraph 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3972 | . . 3 ⊢ ∅ ⊆ (Vtx‘𝐺) | |
2 | dm0 5339 | . . . . 5 ⊢ dom ∅ = ∅ | |
3 | 2 | reseq2i 5393 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ dom ∅) = ((iEdg‘𝐺) ↾ ∅) |
4 | res0 5400 | . . . 4 ⊢ ((iEdg‘𝐺) ↾ ∅) = ∅ | |
5 | 3, 4 | eqtr2i 2645 | . . 3 ⊢ ∅ = ((iEdg‘𝐺) ↾ dom ∅) |
6 | 0ss 3972 | . . 3 ⊢ ∅ ⊆ 𝒫 ∅ | |
7 | 1, 5, 6 | 3pm3.2i 1239 | . 2 ⊢ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅) |
8 | 0ex 4790 | . . 3 ⊢ ∅ ∈ V | |
9 | vtxval0 25931 | . . . . 5 ⊢ (Vtx‘∅) = ∅ | |
10 | 9 | eqcomi 2631 | . . . 4 ⊢ ∅ = (Vtx‘∅) |
11 | eqid 2622 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
12 | iedgval0 25932 | . . . . 5 ⊢ (iEdg‘∅) = ∅ | |
13 | 12 | eqcomi 2631 | . . . 4 ⊢ ∅ = (iEdg‘∅) |
14 | eqid 2622 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
15 | edgval 25941 | . . . . 5 ⊢ (Edg‘∅) = ran (iEdg‘∅) | |
16 | 12 | rneqi 5352 | . . . . 5 ⊢ ran (iEdg‘∅) = ran ∅ |
17 | rn0 5377 | . . . . 5 ⊢ ran ∅ = ∅ | |
18 | 15, 16, 17 | 3eqtrri 2649 | . . . 4 ⊢ ∅ = (Edg‘∅) |
19 | 10, 11, 13, 14, 18 | issubgr 26163 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ ∅ ∈ V) → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅))) |
20 | 8, 19 | mpan2 707 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅))) |
21 | 7, 20 | mpbiri 248 | 1 ⊢ (𝐺 ∈ 𝑊 → ∅ SubGraph 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ⊆ wss 3574 ∅c0 3915 𝒫 cpw 4158 class class class wbr 4653 dom cdm 5114 ran crn 5115 ↾ cres 5116 ‘cfv 5888 Vtxcvtx 25874 iEdgciedg 25875 Edgcedg 25939 SubGraph csubgr 26159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-slot 15861 df-base 15863 df-edgf 25868 df-vtx 25876 df-iedg 25877 df-edg 25940 df-subgr 26160 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |