MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0grsubgr Structured version   Visualization version   GIF version

Theorem 0grsubgr 26170
Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.)
Assertion
Ref Expression
0grsubgr (𝐺𝑊 → ∅ SubGraph 𝐺)

Proof of Theorem 0grsubgr
StepHypRef Expression
1 0ss 3972 . . 3 ∅ ⊆ (Vtx‘𝐺)
2 dm0 5339 . . . . 5 dom ∅ = ∅
32reseq2i 5393 . . . 4 ((iEdg‘𝐺) ↾ dom ∅) = ((iEdg‘𝐺) ↾ ∅)
4 res0 5400 . . . 4 ((iEdg‘𝐺) ↾ ∅) = ∅
53, 4eqtr2i 2645 . . 3 ∅ = ((iEdg‘𝐺) ↾ dom ∅)
6 0ss 3972 . . 3 ∅ ⊆ 𝒫 ∅
71, 5, 63pm3.2i 1239 . 2 (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)
8 0ex 4790 . . 3 ∅ ∈ V
9 vtxval0 25931 . . . . 5 (Vtx‘∅) = ∅
109eqcomi 2631 . . . 4 ∅ = (Vtx‘∅)
11 eqid 2622 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
12 iedgval0 25932 . . . . 5 (iEdg‘∅) = ∅
1312eqcomi 2631 . . . 4 ∅ = (iEdg‘∅)
14 eqid 2622 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
15 edgval 25941 . . . . 5 (Edg‘∅) = ran (iEdg‘∅)
1612rneqi 5352 . . . . 5 ran (iEdg‘∅) = ran ∅
17 rn0 5377 . . . . 5 ran ∅ = ∅
1815, 16, 173eqtrri 2649 . . . 4 ∅ = (Edg‘∅)
1910, 11, 13, 14, 18issubgr 26163 . . 3 ((𝐺𝑊 ∧ ∅ ∈ V) → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)))
208, 19mpan2 707 . 2 (𝐺𝑊 → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)))
217, 20mpbiri 248 1 (𝐺𝑊 → ∅ SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  c0 3915  𝒫 cpw 4158   class class class wbr 4653  dom cdm 5114  ran crn 5115  cres 5116  cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-slot 15861  df-base 15863  df-edgf 25868  df-vtx 25876  df-iedg 25877  df-edg 25940  df-subgr 26160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator