MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0grsubgr Structured version   Visualization version   Unicode version

Theorem 0grsubgr 26170
Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.)
Assertion
Ref Expression
0grsubgr  |-  ( G  e.  W  ->  (/) SubGraph  G )

Proof of Theorem 0grsubgr
StepHypRef Expression
1 0ss 3972 . . 3  |-  (/)  C_  (Vtx `  G )
2 dm0 5339 . . . . 5  |-  dom  (/)  =  (/)
32reseq2i 5393 . . . 4  |-  ( (iEdg `  G )  |`  dom  (/) )  =  ( (iEdg `  G
)  |`  (/) )
4 res0 5400 . . . 4  |-  ( (iEdg `  G )  |`  (/) )  =  (/)
53, 4eqtr2i 2645 . . 3  |-  (/)  =  ( (iEdg `  G )  |` 
dom  (/) )
6 0ss 3972 . . 3  |-  (/)  C_  ~P (/)
71, 5, 63pm3.2i 1239 . 2  |-  ( (/)  C_  (Vtx `  G )  /\  (/)  =  ( (iEdg `  G )  |`  dom  (/) )  /\  (/)  C_  ~P (/) )
8 0ex 4790 . . 3  |-  (/)  e.  _V
9 vtxval0 25931 . . . . 5  |-  (Vtx `  (/) )  =  (/)
109eqcomi 2631 . . . 4  |-  (/)  =  (Vtx
`  (/) )
11 eqid 2622 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
12 iedgval0 25932 . . . . 5  |-  (iEdg `  (/) )  =  (/)
1312eqcomi 2631 . . . 4  |-  (/)  =  (iEdg `  (/) )
14 eqid 2622 . . . 4  |-  (iEdg `  G )  =  (iEdg `  G )
15 edgval 25941 . . . . 5  |-  (Edg `  (/) )  =  ran  (iEdg `  (/) )
1612rneqi 5352 . . . . 5  |-  ran  (iEdg `  (/) )  =  ran  (/)
17 rn0 5377 . . . . 5  |-  ran  (/)  =  (/)
1815, 16, 173eqtrri 2649 . . . 4  |-  (/)  =  (Edg
`  (/) )
1910, 11, 13, 14, 18issubgr 26163 . . 3  |-  ( ( G  e.  W  /\  (/) 
e.  _V )  ->  ( (/) SubGraph  G  <-> 
( (/)  C_  (Vtx `  G
)  /\  (/)  =  ( (iEdg `  G )  |` 
dom  (/) )  /\  (/)  C_  ~P (/) ) ) )
208, 19mpan2 707 . 2  |-  ( G  e.  W  ->  ( (/) SubGraph  G  <-> 
( (/)  C_  (Vtx `  G
)  /\  (/)  =  ( (iEdg `  G )  |` 
dom  (/) )  /\  (/)  C_  ~P (/) ) ) )
217, 20mpbiri 248 1  |-  ( G  e.  W  ->  (/) SubGraph  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653   dom cdm 5114   ran crn 5115    |` cres 5116   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-slot 15861  df-base 15863  df-edgf 25868  df-vtx 25876  df-iedg 25877  df-edg 25940  df-subgr 26160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator