MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubgr Structured version   Visualization version   GIF version

Theorem issubgr 26163
Description: The property of a set to be a subgraph of another set. (Contributed by AV, 16-Nov-2020.)
Hypotheses
Ref Expression
issubgr.v 𝑉 = (Vtx‘𝑆)
issubgr.a 𝐴 = (Vtx‘𝐺)
issubgr.i 𝐼 = (iEdg‘𝑆)
issubgr.b 𝐵 = (iEdg‘𝐺)
issubgr.e 𝐸 = (Edg‘𝑆)
Assertion
Ref Expression
issubgr ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))

Proof of Theorem issubgr
Dummy variables 𝑠 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . 7 (𝑠 = 𝑆 → (Vtx‘𝑠) = (Vtx‘𝑆))
21adantr 481 . . . . . 6 ((𝑠 = 𝑆𝑔 = 𝐺) → (Vtx‘𝑠) = (Vtx‘𝑆))
3 fveq2 6191 . . . . . . 7 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
43adantl 482 . . . . . 6 ((𝑠 = 𝑆𝑔 = 𝐺) → (Vtx‘𝑔) = (Vtx‘𝐺))
52, 4sseq12d 3634 . . . . 5 ((𝑠 = 𝑆𝑔 = 𝐺) → ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ↔ (Vtx‘𝑆) ⊆ (Vtx‘𝐺)))
6 fveq2 6191 . . . . . . 7 (𝑠 = 𝑆 → (iEdg‘𝑠) = (iEdg‘𝑆))
76adantr 481 . . . . . 6 ((𝑠 = 𝑆𝑔 = 𝐺) → (iEdg‘𝑠) = (iEdg‘𝑆))
8 fveq2 6191 . . . . . . . 8 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
98adantl 482 . . . . . . 7 ((𝑠 = 𝑆𝑔 = 𝐺) → (iEdg‘𝑔) = (iEdg‘𝐺))
106dmeqd 5326 . . . . . . . 8 (𝑠 = 𝑆 → dom (iEdg‘𝑠) = dom (iEdg‘𝑆))
1110adantr 481 . . . . . . 7 ((𝑠 = 𝑆𝑔 = 𝐺) → dom (iEdg‘𝑠) = dom (iEdg‘𝑆))
129, 11reseq12d 5397 . . . . . 6 ((𝑠 = 𝑆𝑔 = 𝐺) → ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
137, 12eqeq12d 2637 . . . . 5 ((𝑠 = 𝑆𝑔 = 𝐺) → ((iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ↔ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))))
14 fveq2 6191 . . . . . . 7 (𝑠 = 𝑆 → (Edg‘𝑠) = (Edg‘𝑆))
151pweqd 4163 . . . . . . 7 (𝑠 = 𝑆 → 𝒫 (Vtx‘𝑠) = 𝒫 (Vtx‘𝑆))
1614, 15sseq12d 3634 . . . . . 6 (𝑠 = 𝑆 → ((Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠) ↔ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
1716adantr 481 . . . . 5 ((𝑠 = 𝑆𝑔 = 𝐺) → ((Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠) ↔ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
185, 13, 173anbi123d 1399 . . . 4 ((𝑠 = 𝑆𝑔 = 𝐺) → (((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠)) ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
19 df-subgr 26160 . . . 4 SubGraph = {⟨𝑠, 𝑔⟩ ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠))}
2018, 19brabga 4989 . . 3 ((𝑆𝑈𝐺𝑊) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
2120ancoms 469 . 2 ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
22 issubgr.v . . . 4 𝑉 = (Vtx‘𝑆)
23 issubgr.a . . . 4 𝐴 = (Vtx‘𝐺)
2422, 23sseq12i 3631 . . 3 (𝑉𝐴 ↔ (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
25 issubgr.i . . . 4 𝐼 = (iEdg‘𝑆)
26 issubgr.b . . . . 5 𝐵 = (iEdg‘𝐺)
2725dmeqi 5325 . . . . 5 dom 𝐼 = dom (iEdg‘𝑆)
2826, 27reseq12i 5394 . . . 4 (𝐵 ↾ dom 𝐼) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))
2925, 28eqeq12i 2636 . . 3 (𝐼 = (𝐵 ↾ dom 𝐼) ↔ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
30 issubgr.e . . . 4 𝐸 = (Edg‘𝑆)
3122pweqi 4162 . . . 4 𝒫 𝑉 = 𝒫 (Vtx‘𝑆)
3230, 31sseq12i 3631 . . 3 (𝐸 ⊆ 𝒫 𝑉 ↔ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
3324, 29, 323anbi123i 1251 . 2 ((𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
3421, 33syl6bbr 278 1 ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wss 3574  𝒫 cpw 4158   class class class wbr 4653  dom cdm 5114  cres 5116  cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-dm 5124  df-res 5126  df-iota 5851  df-fv 5896  df-subgr 26160
This theorem is referenced by:  issubgr2  26164  subgrprop  26165  uhgrissubgr  26167  egrsubgr  26169  0grsubgr  26170  uhgrspan1  26195
  Copyright terms: Public domain W3C validator