Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0rngo Structured version   Visualization version   GIF version

Theorem 0rngo 33826
Description: In a ring, 0 = 1 iff the ring contains only 0. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
0ring.1 𝐺 = (1st𝑅)
0ring.2 𝐻 = (2nd𝑅)
0ring.3 𝑋 = ran 𝐺
0ring.4 𝑍 = (GId‘𝐺)
0ring.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
0rngo (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))

Proof of Theorem 0rngo
StepHypRef Expression
1 0ring.4 . . . . . . 7 𝑍 = (GId‘𝐺)
2 fvex 6201 . . . . . . 7 (GId‘𝐺) ∈ V
31, 2eqeltri 2697 . . . . . 6 𝑍 ∈ V
43snid 4208 . . . . 5 𝑍 ∈ {𝑍}
5 eleq1 2689 . . . . 5 (𝑍 = 𝑈 → (𝑍 ∈ {𝑍} ↔ 𝑈 ∈ {𝑍}))
64, 5mpbii 223 . . . 4 (𝑍 = 𝑈𝑈 ∈ {𝑍})
7 0ring.1 . . . . . 6 𝐺 = (1st𝑅)
87, 10idl 33824 . . . . 5 (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
9 0ring.2 . . . . . 6 𝐻 = (2nd𝑅)
10 0ring.3 . . . . . 6 𝑋 = ran 𝐺
11 0ring.5 . . . . . 6 𝑈 = (GId‘𝐻)
127, 9, 10, 111idl 33825 . . . . 5 ((𝑅 ∈ RingOps ∧ {𝑍} ∈ (Idl‘𝑅)) → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋))
138, 12mpdan 702 . . . 4 (𝑅 ∈ RingOps → (𝑈 ∈ {𝑍} ↔ {𝑍} = 𝑋))
146, 13syl5ib 234 . . 3 (𝑅 ∈ RingOps → (𝑍 = 𝑈 → {𝑍} = 𝑋))
15 eqcom 2629 . . 3 ({𝑍} = 𝑋𝑋 = {𝑍})
1614, 15syl6ib 241 . 2 (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))
177rneqi 5352 . . . . 5 ran 𝐺 = ran (1st𝑅)
1810, 17eqtri 2644 . . . 4 𝑋 = ran (1st𝑅)
1918, 9, 11rngo1cl 33738 . . 3 (𝑅 ∈ RingOps → 𝑈𝑋)
20 eleq2 2690 . . . 4 (𝑋 = {𝑍} → (𝑈𝑋𝑈 ∈ {𝑍}))
21 elsni 4194 . . . . 5 (𝑈 ∈ {𝑍} → 𝑈 = 𝑍)
2221eqcomd 2628 . . . 4 (𝑈 ∈ {𝑍} → 𝑍 = 𝑈)
2320, 22syl6bi 243 . . 3 (𝑋 = {𝑍} → (𝑈𝑋𝑍 = 𝑈))
2419, 23syl5com 31 . 2 (𝑅 ∈ RingOps → (𝑋 = {𝑍} → 𝑍 = 𝑈))
2516, 24impbid 202 1 (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177  ran crn 5115  cfv 5888  1st c1st 7166  2nd c2nd 7167  GIdcgi 27344  RingOpscrngo 33693  Idlcidl 33806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-1st 7168  df-2nd 7169  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-ass 33642  df-exid 33644  df-mgmOLD 33648  df-sgrOLD 33660  df-mndo 33666  df-rngo 33694  df-idl 33809
This theorem is referenced by:  smprngopr  33851  isfldidl2  33868
  Copyright terms: Public domain W3C validator