Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0idl Structured version   Visualization version   Unicode version

Theorem 0idl 33824
Description: The set containing only  0 is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
0idl.1  |-  G  =  ( 1st `  R
)
0idl.2  |-  Z  =  (GId `  G )
Assertion
Ref Expression
0idl  |-  ( R  e.  RingOps  ->  { Z }  e.  ( Idl `  R
) )

Proof of Theorem 0idl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0idl.1 . . . 4  |-  G  =  ( 1st `  R
)
2 eqid 2622 . . . 4  |-  ran  G  =  ran  G
3 0idl.2 . . . 4  |-  Z  =  (GId `  G )
41, 2, 3rngo0cl 33718 . . 3  |-  ( R  e.  RingOps  ->  Z  e.  ran  G )
54snssd 4340 . 2  |-  ( R  e.  RingOps  ->  { Z }  C_ 
ran  G )
6 fvex 6201 . . . . 5  |-  (GId `  G )  e.  _V
73, 6eqeltri 2697 . . . 4  |-  Z  e. 
_V
87snid 4208 . . 3  |-  Z  e. 
{ Z }
98a1i 11 . 2  |-  ( R  e.  RingOps  ->  Z  e.  { Z } )
10 velsn 4193 . . . 4  |-  ( x  e.  { Z }  <->  x  =  Z )
11 velsn 4193 . . . . . . . 8  |-  ( y  e.  { Z }  <->  y  =  Z )
121, 2, 3rngo0rid 33719 . . . . . . . . . . 11  |-  ( ( R  e.  RingOps  /\  Z  e.  ran  G )  -> 
( Z G Z )  =  Z )
134, 12mpdan 702 . . . . . . . . . 10  |-  ( R  e.  RingOps  ->  ( Z G Z )  =  Z )
14 ovex 6678 . . . . . . . . . . 11  |-  ( Z G Z )  e. 
_V
1514elsn 4192 . . . . . . . . . 10  |-  ( ( Z G Z )  e.  { Z }  <->  ( Z G Z )  =  Z )
1613, 15sylibr 224 . . . . . . . . 9  |-  ( R  e.  RingOps  ->  ( Z G Z )  e.  { Z } )
17 oveq2 6658 . . . . . . . . . 10  |-  ( y  =  Z  ->  ( Z G y )  =  ( Z G Z ) )
1817eleq1d 2686 . . . . . . . . 9  |-  ( y  =  Z  ->  (
( Z G y )  e.  { Z } 
<->  ( Z G Z )  e.  { Z } ) )
1916, 18syl5ibrcom 237 . . . . . . . 8  |-  ( R  e.  RingOps  ->  ( y  =  Z  ->  ( Z G y )  e. 
{ Z } ) )
2011, 19syl5bi 232 . . . . . . 7  |-  ( R  e.  RingOps  ->  ( y  e. 
{ Z }  ->  ( Z G y )  e.  { Z }
) )
2120ralrimiv 2965 . . . . . 6  |-  ( R  e.  RingOps  ->  A. y  e.  { Z }  ( Z G y )  e. 
{ Z } )
22 eqid 2622 . . . . . . . . . 10  |-  ( 2nd `  R )  =  ( 2nd `  R )
233, 2, 1, 22rngorz 33722 . . . . . . . . 9  |-  ( ( R  e.  RingOps  /\  z  e.  ran  G )  -> 
( z ( 2nd `  R ) Z )  =  Z )
24 ovex 6678 . . . . . . . . . 10  |-  ( z ( 2nd `  R
) Z )  e. 
_V
2524elsn 4192 . . . . . . . . 9  |-  ( ( z ( 2nd `  R
) Z )  e. 
{ Z }  <->  ( z
( 2nd `  R
) Z )  =  Z )
2623, 25sylibr 224 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  z  e.  ran  G )  -> 
( z ( 2nd `  R ) Z )  e.  { Z }
)
273, 2, 1, 22rngolz 33721 . . . . . . . . 9  |-  ( ( R  e.  RingOps  /\  z  e.  ran  G )  -> 
( Z ( 2nd `  R ) z )  =  Z )
28 ovex 6678 . . . . . . . . . 10  |-  ( Z ( 2nd `  R
) z )  e. 
_V
2928elsn 4192 . . . . . . . . 9  |-  ( ( Z ( 2nd `  R
) z )  e. 
{ Z }  <->  ( Z
( 2nd `  R
) z )  =  Z )
3027, 29sylibr 224 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  z  e.  ran  G )  -> 
( Z ( 2nd `  R ) z )  e.  { Z }
)
3126, 30jca 554 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  z  e.  ran  G )  -> 
( ( z ( 2nd `  R ) Z )  e.  { Z }  /\  ( Z ( 2nd `  R
) z )  e. 
{ Z } ) )
3231ralrimiva 2966 . . . . . 6  |-  ( R  e.  RingOps  ->  A. z  e.  ran  G ( ( z ( 2nd `  R ) Z )  e.  { Z }  /\  ( Z ( 2nd `  R
) z )  e. 
{ Z } ) )
3321, 32jca 554 . . . . 5  |-  ( R  e.  RingOps  ->  ( A. y  e.  { Z }  ( Z G y )  e. 
{ Z }  /\  A. z  e.  ran  G
( ( z ( 2nd `  R ) Z )  e.  { Z }  /\  ( Z ( 2nd `  R
) z )  e. 
{ Z } ) ) )
34 oveq1 6657 . . . . . . . 8  |-  ( x  =  Z  ->  (
x G y )  =  ( Z G y ) )
3534eleq1d 2686 . . . . . . 7  |-  ( x  =  Z  ->  (
( x G y )  e.  { Z } 
<->  ( Z G y )  e.  { Z } ) )
3635ralbidv 2986 . . . . . 6  |-  ( x  =  Z  ->  ( A. y  e.  { Z }  ( x G y )  e.  { Z }  <->  A. y  e.  { Z }  ( Z G y )  e. 
{ Z } ) )
37 oveq2 6658 . . . . . . . . 9  |-  ( x  =  Z  ->  (
z ( 2nd `  R
) x )  =  ( z ( 2nd `  R ) Z ) )
3837eleq1d 2686 . . . . . . . 8  |-  ( x  =  Z  ->  (
( z ( 2nd `  R ) x )  e.  { Z }  <->  ( z ( 2nd `  R
) Z )  e. 
{ Z } ) )
39 oveq1 6657 . . . . . . . . 9  |-  ( x  =  Z  ->  (
x ( 2nd `  R
) z )  =  ( Z ( 2nd `  R ) z ) )
4039eleq1d 2686 . . . . . . . 8  |-  ( x  =  Z  ->  (
( x ( 2nd `  R ) z )  e.  { Z }  <->  ( Z ( 2nd `  R
) z )  e. 
{ Z } ) )
4138, 40anbi12d 747 . . . . . . 7  |-  ( x  =  Z  ->  (
( ( z ( 2nd `  R ) x )  e.  { Z }  /\  (
x ( 2nd `  R
) z )  e. 
{ Z } )  <-> 
( ( z ( 2nd `  R ) Z )  e.  { Z }  /\  ( Z ( 2nd `  R
) z )  e. 
{ Z } ) ) )
4241ralbidv 2986 . . . . . 6  |-  ( x  =  Z  ->  ( A. z  e.  ran  G ( ( z ( 2nd `  R ) x )  e.  { Z }  /\  (
x ( 2nd `  R
) z )  e. 
{ Z } )  <->  A. z  e.  ran  G ( ( z ( 2nd `  R ) Z )  e.  { Z }  /\  ( Z ( 2nd `  R
) z )  e. 
{ Z } ) ) )
4336, 42anbi12d 747 . . . . 5  |-  ( x  =  Z  ->  (
( A. y  e. 
{ Z }  (
x G y )  e.  { Z }  /\  A. z  e.  ran  G ( ( z ( 2nd `  R ) x )  e.  { Z }  /\  (
x ( 2nd `  R
) z )  e. 
{ Z } ) )  <->  ( A. y  e.  { Z }  ( Z G y )  e. 
{ Z }  /\  A. z  e.  ran  G
( ( z ( 2nd `  R ) Z )  e.  { Z }  /\  ( Z ( 2nd `  R
) z )  e. 
{ Z } ) ) ) )
4433, 43syl5ibrcom 237 . . . 4  |-  ( R  e.  RingOps  ->  ( x  =  Z  ->  ( A. y  e.  { Z }  ( x G y )  e.  { Z }  /\  A. z  e.  ran  G ( ( z ( 2nd `  R
) x )  e. 
{ Z }  /\  ( x ( 2nd `  R ) z )  e.  { Z }
) ) ) )
4510, 44syl5bi 232 . . 3  |-  ( R  e.  RingOps  ->  ( x  e. 
{ Z }  ->  ( A. y  e.  { Z }  ( x G y )  e. 
{ Z }  /\  A. z  e.  ran  G
( ( z ( 2nd `  R ) x )  e.  { Z }  /\  (
x ( 2nd `  R
) z )  e. 
{ Z } ) ) ) )
4645ralrimiv 2965 . 2  |-  ( R  e.  RingOps  ->  A. x  e.  { Z }  ( A. y  e.  { Z }  ( x G y )  e.  { Z }  /\  A. z  e.  ran  G ( ( z ( 2nd `  R
) x )  e. 
{ Z }  /\  ( x ( 2nd `  R ) z )  e.  { Z }
) ) )
471, 22, 2, 3isidl 33813 . 2  |-  ( R  e.  RingOps  ->  ( { Z }  e.  ( Idl `  R )  <->  ( { Z }  C_  ran  G  /\  Z  e.  { Z }  /\  A. x  e. 
{ Z }  ( A. y  e.  { Z }  ( x G y )  e.  { Z }  /\  A. z  e.  ran  G ( ( z ( 2nd `  R
) x )  e. 
{ Z }  /\  ( x ( 2nd `  R ) z )  e.  { Z }
) ) ) ) )
485, 9, 46, 47mpbir3and 1245 1  |-  ( R  e.  RingOps  ->  { Z }  e.  ( Idl `  R
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   {csn 4177   ran crn 5115   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167  GIdcgi 27344   RingOpscrngo 33693   Idlcidl 33806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-1st 7168  df-2nd 7169  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-rngo 33694  df-idl 33809
This theorem is referenced by:  0rngo  33826  divrngidl  33827  smprngopr  33851  isdmn3  33873
  Copyright terms: Public domain W3C validator