| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0idl | Structured version Visualization version Unicode version | ||
| Description: The set containing only
|
| Ref | Expression |
|---|---|
| 0idl.1 |
|
| 0idl.2 |
|
| Ref | Expression |
|---|---|
| 0idl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0idl.1 |
. . . 4
| |
| 2 | eqid 2622 |
. . . 4
| |
| 3 | 0idl.2 |
. . . 4
| |
| 4 | 1, 2, 3 | rngo0cl 33718 |
. . 3
|
| 5 | 4 | snssd 4340 |
. 2
|
| 6 | fvex 6201 |
. . . . 5
| |
| 7 | 3, 6 | eqeltri 2697 |
. . . 4
|
| 8 | 7 | snid 4208 |
. . 3
|
| 9 | 8 | a1i 11 |
. 2
|
| 10 | velsn 4193 |
. . . 4
| |
| 11 | velsn 4193 |
. . . . . . . 8
| |
| 12 | 1, 2, 3 | rngo0rid 33719 |
. . . . . . . . . . 11
|
| 13 | 4, 12 | mpdan 702 |
. . . . . . . . . 10
|
| 14 | ovex 6678 |
. . . . . . . . . . 11
| |
| 15 | 14 | elsn 4192 |
. . . . . . . . . 10
|
| 16 | 13, 15 | sylibr 224 |
. . . . . . . . 9
|
| 17 | oveq2 6658 |
. . . . . . . . . 10
| |
| 18 | 17 | eleq1d 2686 |
. . . . . . . . 9
|
| 19 | 16, 18 | syl5ibrcom 237 |
. . . . . . . 8
|
| 20 | 11, 19 | syl5bi 232 |
. . . . . . 7
|
| 21 | 20 | ralrimiv 2965 |
. . . . . 6
|
| 22 | eqid 2622 |
. . . . . . . . . 10
| |
| 23 | 3, 2, 1, 22 | rngorz 33722 |
. . . . . . . . 9
|
| 24 | ovex 6678 |
. . . . . . . . . 10
| |
| 25 | 24 | elsn 4192 |
. . . . . . . . 9
|
| 26 | 23, 25 | sylibr 224 |
. . . . . . . 8
|
| 27 | 3, 2, 1, 22 | rngolz 33721 |
. . . . . . . . 9
|
| 28 | ovex 6678 |
. . . . . . . . . 10
| |
| 29 | 28 | elsn 4192 |
. . . . . . . . 9
|
| 30 | 27, 29 | sylibr 224 |
. . . . . . . 8
|
| 31 | 26, 30 | jca 554 |
. . . . . . 7
|
| 32 | 31 | ralrimiva 2966 |
. . . . . 6
|
| 33 | 21, 32 | jca 554 |
. . . . 5
|
| 34 | oveq1 6657 |
. . . . . . . 8
| |
| 35 | 34 | eleq1d 2686 |
. . . . . . 7
|
| 36 | 35 | ralbidv 2986 |
. . . . . 6
|
| 37 | oveq2 6658 |
. . . . . . . . 9
| |
| 38 | 37 | eleq1d 2686 |
. . . . . . . 8
|
| 39 | oveq1 6657 |
. . . . . . . . 9
| |
| 40 | 39 | eleq1d 2686 |
. . . . . . . 8
|
| 41 | 38, 40 | anbi12d 747 |
. . . . . . 7
|
| 42 | 41 | ralbidv 2986 |
. . . . . 6
|
| 43 | 36, 42 | anbi12d 747 |
. . . . 5
|
| 44 | 33, 43 | syl5ibrcom 237 |
. . . 4
|
| 45 | 10, 44 | syl5bi 232 |
. . 3
|
| 46 | 45 | ralrimiv 2965 |
. 2
|
| 47 | 1, 22, 2, 3 | isidl 33813 |
. 2
|
| 48 | 5, 9, 46, 47 | mpbir3and 1245 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-1st 7168 df-2nd 7169 df-grpo 27347 df-gid 27348 df-ginv 27349 df-ablo 27399 df-rngo 33694 df-idl 33809 |
| This theorem is referenced by: 0rngo 33826 divrngidl 33827 smprngopr 33851 isdmn3 33873 |
| Copyright terms: Public domain | W3C validator |