| Step | Hyp | Ref
| Expression |
| 1 | | df2o2 7574 |
. . . 4
⊢
2𝑜 = {∅, {∅}} |
| 2 | 1 | breq1i 4660 |
. . 3
⊢
(2𝑜 ≼ 𝐴 ↔ {∅, {∅}} ≼ 𝐴) |
| 3 | | brdomi 7966 |
. . 3
⊢
({∅, {∅}} ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴) |
| 4 | 2, 3 | sylbi 207 |
. 2
⊢
(2𝑜 ≼ 𝐴 → ∃𝑓 𝑓:{∅, {∅}}–1-1→𝐴) |
| 5 | | f1f 6101 |
. . . . 5
⊢ (𝑓:{∅,
{∅}}–1-1→𝐴 → 𝑓:{∅, {∅}}⟶𝐴) |
| 6 | | 0ex 4790 |
. . . . . 6
⊢ ∅
∈ V |
| 7 | 6 | prid1 4297 |
. . . . 5
⊢ ∅
∈ {∅, {∅}} |
| 8 | | ffvelrn 6357 |
. . . . 5
⊢ ((𝑓:{∅,
{∅}}⟶𝐴 ∧
∅ ∈ {∅, {∅}}) → (𝑓‘∅) ∈ 𝐴) |
| 9 | 5, 7, 8 | sylancl 694 |
. . . 4
⊢ (𝑓:{∅,
{∅}}–1-1→𝐴 → (𝑓‘∅) ∈ 𝐴) |
| 10 | | p0ex 4853 |
. . . . . 6
⊢ {∅}
∈ V |
| 11 | 10 | prid2 4298 |
. . . . 5
⊢ {∅}
∈ {∅, {∅}} |
| 12 | | ffvelrn 6357 |
. . . . 5
⊢ ((𝑓:{∅,
{∅}}⟶𝐴 ∧
{∅} ∈ {∅, {∅}}) → (𝑓‘{∅}) ∈ 𝐴) |
| 13 | 5, 11, 12 | sylancl 694 |
. . . 4
⊢ (𝑓:{∅,
{∅}}–1-1→𝐴 → (𝑓‘{∅}) ∈ 𝐴) |
| 14 | | 0nep0 4836 |
. . . . . 6
⊢ ∅
≠ {∅} |
| 15 | 14 | neii 2796 |
. . . . 5
⊢ ¬
∅ = {∅} |
| 16 | | f1fveq 6519 |
. . . . . 6
⊢ ((𝑓:{∅,
{∅}}–1-1→𝐴 ∧ (∅ ∈ {∅,
{∅}} ∧ {∅} ∈ {∅, {∅}})) → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅
= {∅})) |
| 17 | 7, 11, 16 | mpanr12 721 |
. . . . 5
⊢ (𝑓:{∅,
{∅}}–1-1→𝐴 → ((𝑓‘∅) = (𝑓‘{∅}) ↔ ∅ =
{∅})) |
| 18 | 15, 17 | mtbiri 317 |
. . . 4
⊢ (𝑓:{∅,
{∅}}–1-1→𝐴 → ¬ (𝑓‘∅) = (𝑓‘{∅})) |
| 19 | | eqeq1 2626 |
. . . . . 6
⊢ (𝑥 = (𝑓‘∅) → (𝑥 = 𝑦 ↔ (𝑓‘∅) = 𝑦)) |
| 20 | 19 | notbid 308 |
. . . . 5
⊢ (𝑥 = (𝑓‘∅) → (¬ 𝑥 = 𝑦 ↔ ¬ (𝑓‘∅) = 𝑦)) |
| 21 | | eqeq2 2633 |
. . . . . 6
⊢ (𝑦 = (𝑓‘{∅}) → ((𝑓‘∅) = 𝑦 ↔ (𝑓‘∅) = (𝑓‘{∅}))) |
| 22 | 21 | notbid 308 |
. . . . 5
⊢ (𝑦 = (𝑓‘{∅}) → (¬ (𝑓‘∅) = 𝑦 ↔ ¬ (𝑓‘∅) = (𝑓‘{∅}))) |
| 23 | 20, 22 | rspc2ev 3324 |
. . . 4
⊢ (((𝑓‘∅) ∈ 𝐴 ∧ (𝑓‘{∅}) ∈ 𝐴 ∧ ¬ (𝑓‘∅) = (𝑓‘{∅})) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| 24 | 9, 13, 18, 23 | syl3anc 1326 |
. . 3
⊢ (𝑓:{∅,
{∅}}–1-1→𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| 25 | 24 | exlimiv 1858 |
. 2
⊢
(∃𝑓 𝑓:{∅,
{∅}}–1-1→𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
| 26 | 4, 25 | syl 17 |
1
⊢
(2𝑜 ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |