![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanr12 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
Ref | Expression |
---|---|
mpanr12.1 | ⊢ 𝜓 |
mpanr12.2 | ⊢ 𝜒 |
mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr12 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | mpanr1 719 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan2 707 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: wfisg 5715 2dom 8029 limensuci 8136 phplem4 8142 unfi 8227 fiint 8237 cdaen 8995 isfin1-3 9208 prlem934 9855 0idsr 9918 1idsr 9919 00sr 9920 addresr 9959 mulresr 9960 reclt1 10918 crne0 11013 nominpos 11269 expnass 12970 faclbnd2 13078 crim 13855 sqrlem1 13983 sqrlem7 13989 sqrt00 14004 sqreulem 14099 mulcn2 14326 ege2le3 14820 sin02gt0 14922 opoe 15087 oddprm 15515 pythagtriplem2 15522 pythagtriplem3 15523 pythagtriplem16 15535 pythagtrip 15539 pc1 15560 prmlem0 15812 acsfn0 16321 mgpress 18500 abvneg 18834 pmatcollpw3 20589 leordtval2 21016 txswaphmeo 21608 iccntr 22624 dvlipcn 23757 sinq34lt0t 24261 cosordlem 24277 efif1olem3 24290 lgamgulmlem2 24756 basellem3 24809 ppiub 24929 bposlem9 25017 lgsne0 25060 lgsdinn0 25070 chebbnd1 25161 eupth2lem3lem4 27091 mayete3i 28587 lnop0 28825 nmcexi 28885 nmoptrii 28953 nmopcoadji 28960 hstle1 29085 hst0 29092 strlem5 29114 jplem1 29127 cnvoprab 29498 subfacp1lem5 31166 frinsg 31742 limsucncmpi 32444 matunitlindflem1 33405 poimirlem15 33424 dvasin 33496 fdc 33541 eldioph3b 37328 sprsymrelfolem2 41743 sinhpcosh 42481 |
Copyright terms: Public domain | W3C validator |