MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2dom Structured version   Visualization version   Unicode version

Theorem 2dom 8029
Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
2dom  |-  ( 2o  ~<_  A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y )
Distinct variable group:    x, y, A

Proof of Theorem 2dom
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df2o2 7574 . . . 4  |-  2o  =  { (/) ,  { (/) } }
21breq1i 4660 . . 3  |-  ( 2o  ~<_  A  <->  { (/) ,  { (/) } }  ~<_  A )
3 brdomi 7966 . . 3  |-  ( {
(/) ,  { (/) } }  ~<_  A  ->  E. f  f : { (/) ,  { (/) } } -1-1-> A )
42, 3sylbi 207 . 2  |-  ( 2o  ~<_  A  ->  E. f 
f : { (/) ,  { (/) } } -1-1-> A
)
5 f1f 6101 . . . . 5  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  -> 
f : { (/) ,  { (/) } } --> A )
6 0ex 4790 . . . . . 6  |-  (/)  e.  _V
76prid1 4297 . . . . 5  |-  (/)  e.  { (/)
,  { (/) } }
8 ffvelrn 6357 . . . . 5  |-  ( ( f : { (/) ,  { (/) } } --> A  /\  (/) 
e.  { (/) ,  { (/)
} } )  -> 
( f `  (/) )  e.  A )
95, 7, 8sylancl 694 . . . 4  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  -> 
( f `  (/) )  e.  A )
10 p0ex 4853 . . . . . 6  |-  { (/) }  e.  _V
1110prid2 4298 . . . . 5  |-  { (/) }  e.  { (/) ,  { (/)
} }
12 ffvelrn 6357 . . . . 5  |-  ( ( f : { (/) ,  { (/) } } --> A  /\  {
(/) }  e.  { (/) ,  { (/) } } )  ->  ( f `  { (/) } )  e.  A )
135, 11, 12sylancl 694 . . . 4  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  -> 
( f `  { (/)
} )  e.  A
)
14 0nep0 4836 . . . . . 6  |-  (/)  =/=  { (/)
}
1514neii 2796 . . . . 5  |-  -.  (/)  =  { (/)
}
16 f1fveq 6519 . . . . . 6  |-  ( ( f : { (/) ,  { (/) } } -1-1-> A  /\  ( (/)  e.  { (/) ,  { (/) } }  /\  {
(/) }  e.  { (/) ,  { (/) } } ) )  ->  ( (
f `  (/) )  =  ( f `  { (/)
} )  <->  (/)  =  { (/)
} ) )
177, 11, 16mpanr12 721 . . . . 5  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  -> 
( ( f `  (/) )  =  ( f `
 { (/) } )  <->  (/)  =  { (/) } ) )
1815, 17mtbiri 317 . . . 4  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  ->  -.  ( f `  (/) )  =  ( f `  { (/)
} ) )
19 eqeq1 2626 . . . . . 6  |-  ( x  =  ( f `  (/) )  ->  ( x  =  y  <->  ( f `  (/) )  =  y ) )
2019notbid 308 . . . . 5  |-  ( x  =  ( f `  (/) )  ->  ( -.  x  =  y  <->  -.  (
f `  (/) )  =  y ) )
21 eqeq2 2633 . . . . . 6  |-  ( y  =  ( f `  { (/) } )  -> 
( ( f `  (/) )  =  y  <->  ( f `  (/) )  =  ( f `  { (/) } ) ) )
2221notbid 308 . . . . 5  |-  ( y  =  ( f `  { (/) } )  -> 
( -.  ( f `
 (/) )  =  y  <->  -.  ( f `  (/) )  =  ( f `  { (/)
} ) ) )
2320, 22rspc2ev 3324 . . . 4  |-  ( ( ( f `  (/) )  e.  A  /\  ( f `
 { (/) } )  e.  A  /\  -.  ( f `  (/) )  =  ( f `  { (/)
} ) )  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y
)
249, 13, 18, 23syl3anc 1326 . . 3  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y
)
2524exlimiv 1858 . 2  |-  ( E. f  f : { (/)
,  { (/) } } -1-1->
A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y )
264, 25syl 17 1  |-  ( 2o  ~<_  A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   (/)c0 3915   {csn 4177   {cpr 4179   class class class wbr 4653   -->wf 5884   -1-1->wf1 5885   ` cfv 5888   2oc2o 7554    ~<_ cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896  df-1o 7560  df-2o 7561  df-dom 7957
This theorem is referenced by:  1sdom  8163
  Copyright terms: Public domain W3C validator