MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndval Structured version   Visualization version   GIF version

Theorem 2ndval 7171
Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
2ndval (2nd𝐴) = ran {𝐴}

Proof of Theorem 2ndval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4187 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21rneqd 5353 . . . 4 (𝑥 = 𝐴 → ran {𝑥} = ran {𝐴})
32unieqd 4446 . . 3 (𝑥 = 𝐴 ran {𝑥} = ran {𝐴})
4 df-2nd 7169 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
5 snex 4908 . . . . 5 {𝐴} ∈ V
65rnex 7100 . . . 4 ran {𝐴} ∈ V
76uniex 6953 . . 3 ran {𝐴} ∈ V
83, 4, 7fvmpt 6282 . 2 (𝐴 ∈ V → (2nd𝐴) = ran {𝐴})
9 fvprc 6185 . . 3 𝐴 ∈ V → (2nd𝐴) = ∅)
10 snprc 4253 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
1110biimpi 206 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
1211rneqd 5353 . . . . . 6 𝐴 ∈ V → ran {𝐴} = ran ∅)
13 rn0 5377 . . . . . 6 ran ∅ = ∅
1412, 13syl6eq 2672 . . . . 5 𝐴 ∈ V → ran {𝐴} = ∅)
1514unieqd 4446 . . . 4 𝐴 ∈ V → ran {𝐴} = ∅)
16 uni0 4465 . . . 4 ∅ = ∅
1715, 16syl6eq 2672 . . 3 𝐴 ∈ V → ran {𝐴} = ∅)
189, 17eqtr4d 2659 . 2 𝐴 ∈ V → (2nd𝐴) = ran {𝐴})
198, 18pm2.61i 176 1 (2nd𝐴) = ran {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  {csn 4177   cuni 4436  ran crn 5115  cfv 5888  2nd c2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-2nd 7169
This theorem is referenced by:  2ndnpr  7173  2nd0  7175  op2nd  7177  2nd2val  7195  elxp6  7200
  Copyright terms: Public domain W3C validator