Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpr2rico Structured version   Visualization version   GIF version

Theorem tpr2rico 29958
Description: For any point of an open set of the usual topology on (ℝ × ℝ) there is an open square which contains that point and is entirely in the open set. This is square is actually a ball by the (𝑙↑+∞) norm 𝑋. (Contributed by Thierry Arnoux, 21-Sep-2017.)
Hypotheses
Ref Expression
tpr2rico.0 𝐽 = (topGen‘ran (,))
tpr2rico.1 𝐺 = (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣)))
tpr2rico.2 𝐵 = ran (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
tpr2rico ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑟𝐵 (𝑋𝑟𝑟𝐴))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦   𝑥,𝑟,𝐴   𝐵,𝑟   𝑥,𝐺   𝑥,𝐽   𝑥,𝑋   𝑦,𝑟,𝑋
Allowed substitution hints:   𝐴(𝑦,𝑣,𝑢)   𝐵(𝑥,𝑦,𝑣,𝑢)   𝐺(𝑦,𝑣,𝑢,𝑟)   𝐽(𝑦,𝑣,𝑢,𝑟)   𝑋(𝑣,𝑢)

Proof of Theorem tpr2rico
Dummy variables 𝑧 𝑚 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 12179 . . . . . . . . . 10 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
21ixxf 12185 . . . . . . . . 9 (,):(ℝ* × ℝ*)⟶𝒫 ℝ*
3 ffn 6045 . . . . . . . . 9 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ* → (,) Fn (ℝ* × ℝ*))
42, 3mp1i 13 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (,) Fn (ℝ* × ℝ*))
5 elssuni 4467 . . . . . . . . . . . . . 14 (𝐴 ∈ (𝐽 ×t 𝐽) → 𝐴 (𝐽 ×t 𝐽))
6 tpr2rico.0 . . . . . . . . . . . . . . . 16 𝐽 = (topGen‘ran (,))
7 retop 22565 . . . . . . . . . . . . . . . 16 (topGen‘ran (,)) ∈ Top
86, 7eqeltri 2697 . . . . . . . . . . . . . . 15 𝐽 ∈ Top
9 uniretop 22566 . . . . . . . . . . . . . . . 16 ℝ = (topGen‘ran (,))
106unieqi 4445 . . . . . . . . . . . . . . . 16 𝐽 = (topGen‘ran (,))
119, 10eqtr4i 2647 . . . . . . . . . . . . . . 15 ℝ = 𝐽
128, 8, 11, 11txunii 21396 . . . . . . . . . . . . . 14 (ℝ × ℝ) = (𝐽 ×t 𝐽)
135, 12syl6sseqr 3652 . . . . . . . . . . . . 13 (𝐴 ∈ (𝐽 ×t 𝐽) → 𝐴 ⊆ (ℝ × ℝ))
1413ad2antrr 762 . . . . . . . . . . . 12 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝐴 ⊆ (ℝ × ℝ))
15 simplr 792 . . . . . . . . . . . 12 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑋𝐴)
1614, 15sseldd 3604 . . . . . . . . . . 11 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑋 ∈ (ℝ × ℝ))
17 xp1st 7198 . . . . . . . . . . 11 (𝑋 ∈ (ℝ × ℝ) → (1st𝑋) ∈ ℝ)
1816, 17syl 17 . . . . . . . . . 10 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (1st𝑋) ∈ ℝ)
19 simpr 477 . . . . . . . . . . . 12 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ+)
2019rpred 11872 . . . . . . . . . . 11 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ)
2120rehalfcld 11279 . . . . . . . . . 10 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (𝑑 / 2) ∈ ℝ)
2218, 21resubcld 10458 . . . . . . . . 9 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) − (𝑑 / 2)) ∈ ℝ)
2322rexrd 10089 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) − (𝑑 / 2)) ∈ ℝ*)
2418, 21readdcld 10069 . . . . . . . . 9 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) + (𝑑 / 2)) ∈ ℝ)
2524rexrd 10089 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) + (𝑑 / 2)) ∈ ℝ*)
26 fnovrn 6809 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ ((1st𝑋) − (𝑑 / 2)) ∈ ℝ* ∧ ((1st𝑋) + (𝑑 / 2)) ∈ ℝ*) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ∈ ran (,))
274, 23, 25, 26syl3anc 1326 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ∈ ran (,))
28 xp2nd 7199 . . . . . . . . . . 11 (𝑋 ∈ (ℝ × ℝ) → (2nd𝑋) ∈ ℝ)
2916, 28syl 17 . . . . . . . . . 10 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (2nd𝑋) ∈ ℝ)
3029, 21resubcld 10458 . . . . . . . . 9 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) − (𝑑 / 2)) ∈ ℝ)
3130rexrd 10089 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) − (𝑑 / 2)) ∈ ℝ*)
3229, 21readdcld 10069 . . . . . . . . 9 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) + (𝑑 / 2)) ∈ ℝ)
3332rexrd 10089 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) + (𝑑 / 2)) ∈ ℝ*)
34 fnovrn 6809 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ ((2nd𝑋) − (𝑑 / 2)) ∈ ℝ* ∧ ((2nd𝑋) + (𝑑 / 2)) ∈ ℝ*) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ∈ ran (,))
354, 31, 33, 34syl3anc 1326 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ∈ ran (,))
36 eqidd 2623 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))))
37 xpeq1 5128 . . . . . . . . 9 (𝑥 = (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) → (𝑥 × 𝑦) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × 𝑦))
3837eqeq2d 2632 . . . . . . . 8 (𝑥 = (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) → (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = (𝑥 × 𝑦) ↔ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × 𝑦)))
39 xpeq2 5129 . . . . . . . . 9 (𝑦 = (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × 𝑦) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))))
4039eqeq2d 2632 . . . . . . . 8 (𝑦 = (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) → (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × 𝑦) ↔ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))))
4138, 40rspc2ev 3324 . . . . . . 7 (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ∈ ran (,) ∧ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ∈ ran (,) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))) → ∃𝑥 ∈ ran (,)∃𝑦 ∈ ran (,)((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = (𝑥 × 𝑦))
4227, 35, 36, 41syl3anc 1326 . . . . . 6 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ∃𝑥 ∈ ran (,)∃𝑦 ∈ ran (,)((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = (𝑥 × 𝑦))
43 eqid 2622 . . . . . . 7 (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦)) = (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦))
44 vex 3203 . . . . . . . 8 𝑥 ∈ V
45 vex 3203 . . . . . . . 8 𝑦 ∈ V
4644, 45xpex 6962 . . . . . . 7 (𝑥 × 𝑦) ∈ V
4743, 46elrnmpt2 6773 . . . . . 6 (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ ran (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦)) ↔ ∃𝑥 ∈ ran (,)∃𝑦 ∈ ran (,)((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = (𝑥 × 𝑦))
4842, 47sylibr 224 . . . . 5 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ ran (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦)))
49 tpr2rico.2 . . . . 5 𝐵 = ran (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦))
5048, 49syl6eleqr 2712 . . . 4 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵)
5150ralrimiva 2966 . . 3 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∀𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵)
52 xpss 5226 . . . . . . 7 (ℝ × ℝ) ⊆ (V × V)
5352, 16sseldi 3601 . . . . . 6 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑋 ∈ (V × V))
5418rexrd 10089 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (1st𝑋) ∈ ℝ*)
5519rphalfcld 11884 . . . . . . . . 9 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (𝑑 / 2) ∈ ℝ+)
5618, 55ltsubrpd 11904 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) − (𝑑 / 2)) < (1st𝑋))
5718, 55ltaddrpd 11905 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (1st𝑋) < ((1st𝑋) + (𝑑 / 2)))
58 elioo1 12215 . . . . . . . . 9 ((((1st𝑋) − (𝑑 / 2)) ∈ ℝ* ∧ ((1st𝑋) + (𝑑 / 2)) ∈ ℝ*) → ((1st𝑋) ∈ (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ↔ ((1st𝑋) ∈ ℝ* ∧ ((1st𝑋) − (𝑑 / 2)) < (1st𝑋) ∧ (1st𝑋) < ((1st𝑋) + (𝑑 / 2)))))
5923, 25, 58syl2anc 693 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) ∈ (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ↔ ((1st𝑋) ∈ ℝ* ∧ ((1st𝑋) − (𝑑 / 2)) < (1st𝑋) ∧ (1st𝑋) < ((1st𝑋) + (𝑑 / 2)))))
6054, 56, 57, 59mpbir3and 1245 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (1st𝑋) ∈ (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))))
6129rexrd 10089 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (2nd𝑋) ∈ ℝ*)
6229, 55ltsubrpd 11904 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) − (𝑑 / 2)) < (2nd𝑋))
6329, 55ltaddrpd 11905 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (2nd𝑋) < ((2nd𝑋) + (𝑑 / 2)))
64 elioo1 12215 . . . . . . . . 9 ((((2nd𝑋) − (𝑑 / 2)) ∈ ℝ* ∧ ((2nd𝑋) + (𝑑 / 2)) ∈ ℝ*) → ((2nd𝑋) ∈ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ↔ ((2nd𝑋) ∈ ℝ* ∧ ((2nd𝑋) − (𝑑 / 2)) < (2nd𝑋) ∧ (2nd𝑋) < ((2nd𝑋) + (𝑑 / 2)))))
6531, 33, 64syl2anc 693 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) ∈ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ↔ ((2nd𝑋) ∈ ℝ* ∧ ((2nd𝑋) − (𝑑 / 2)) < (2nd𝑋) ∧ (2nd𝑋) < ((2nd𝑋) + (𝑑 / 2)))))
6661, 62, 63, 65mpbir3and 1245 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (2nd𝑋) ∈ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))
6760, 66jca 554 . . . . . 6 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) ∈ (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ∧ (2nd𝑋) ∈ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))))
68 elxp7 7201 . . . . . 6 (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ↔ (𝑋 ∈ (V × V) ∧ ((1st𝑋) ∈ (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ∧ (2nd𝑋) ∈ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))))
6953, 67, 68sylanbrc 698 . . . . 5 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))))
7069ralrimiva 2966 . . . 4 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∀𝑑 ∈ ℝ+ 𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))))
71 mnfle 11969 . . . . . . . . . . . . . . . . . 18 (((1st𝑋) − (𝑑 / 2)) ∈ ℝ* → -∞ ≤ ((1st𝑋) − (𝑑 / 2)))
7223, 71syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → -∞ ≤ ((1st𝑋) − (𝑑 / 2)))
73 pnfge 11964 . . . . . . . . . . . . . . . . . 18 (((1st𝑋) + (𝑑 / 2)) ∈ ℝ* → ((1st𝑋) + (𝑑 / 2)) ≤ +∞)
7425, 73syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) + (𝑑 / 2)) ≤ +∞)
75 mnfxr 10096 . . . . . . . . . . . . . . . . . 18 -∞ ∈ ℝ*
76 pnfxr 10092 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
77 ioossioo 12265 . . . . . . . . . . . . . . . . . 18 (((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ ≤ ((1st𝑋) − (𝑑 / 2)) ∧ ((1st𝑋) + (𝑑 / 2)) ≤ +∞)) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
7875, 76, 77mpanl12 718 . . . . . . . . . . . . . . . . 17 ((-∞ ≤ ((1st𝑋) − (𝑑 / 2)) ∧ ((1st𝑋) + (𝑑 / 2)) ≤ +∞) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
7972, 74, 78syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
80 ioomax 12248 . . . . . . . . . . . . . . . 16 (-∞(,)+∞) = ℝ
8179, 80syl6sseq 3651 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ⊆ ℝ)
82 mnfle 11969 . . . . . . . . . . . . . . . . . 18 (((2nd𝑋) − (𝑑 / 2)) ∈ ℝ* → -∞ ≤ ((2nd𝑋) − (𝑑 / 2)))
8331, 82syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → -∞ ≤ ((2nd𝑋) − (𝑑 / 2)))
84 pnfge 11964 . . . . . . . . . . . . . . . . . 18 (((2nd𝑋) + (𝑑 / 2)) ∈ ℝ* → ((2nd𝑋) + (𝑑 / 2)) ≤ +∞)
8533, 84syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) + (𝑑 / 2)) ≤ +∞)
86 ioossioo 12265 . . . . . . . . . . . . . . . . . 18 (((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ ≤ ((2nd𝑋) − (𝑑 / 2)) ∧ ((2nd𝑋) + (𝑑 / 2)) ≤ +∞)) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
8775, 76, 86mpanl12 718 . . . . . . . . . . . . . . . . 17 ((-∞ ≤ ((2nd𝑋) − (𝑑 / 2)) ∧ ((2nd𝑋) + (𝑑 / 2)) ≤ +∞) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
8883, 85, 87syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
8988, 80syl6sseq 3651 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ⊆ ℝ)
90 xpss12 5225 . . . . . . . . . . . . . . 15 (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ⊆ ℝ ∧ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ⊆ ℝ) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (ℝ × ℝ))
9181, 89, 90syl2anc 693 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (ℝ × ℝ))
9291sselda 3603 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))) → 𝑥 ∈ (ℝ × ℝ))
9392expcom 451 . . . . . . . . . . . 12 (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑥 ∈ (ℝ × ℝ)))
9493ancld 576 . . . . . . . . . . 11 (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ))))
9594imdistanri 727 . . . . . . . . . 10 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))) → ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ 𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))))
9613adantr 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ (𝑋𝐴𝑑 ∈ ℝ+𝑥 ∈ (ℝ × ℝ))) → 𝐴 ⊆ (ℝ × ℝ))
97 simpr1 1067 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ (𝑋𝐴𝑑 ∈ ℝ+𝑥 ∈ (ℝ × ℝ))) → 𝑋𝐴)
9896, 97sseldd 3604 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ (𝑋𝐴𝑑 ∈ ℝ+𝑥 ∈ (ℝ × ℝ))) → 𝑋 ∈ (ℝ × ℝ))
99983anassrs 1290 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝑋 ∈ (ℝ × ℝ))
100 simpr 477 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝑥 ∈ (ℝ × ℝ))
101 simplr 792 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝑑 ∈ ℝ+)
102101rphalfcld 11884 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝑑 / 2) ∈ ℝ+)
103 tpr2rico.1 . . . . . . . . . . . . . . 15 𝐺 = (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣)))
104103cnre2csqima 29957 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑥 ∈ (ℝ × ℝ) ∧ (𝑑 / 2) ∈ ℝ+) → (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → ((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2))))
10599, 100, 102, 104syl3anc 1326 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → ((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2))))
106 eqid 2622 . . . . . . . . . . . . . . . . . . . . 21 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
107103, 6, 106cnrehmeo 22752 . . . . . . . . . . . . . . . . . . . 20 𝐺 ∈ ((𝐽 ×t 𝐽)Homeo(TopOpen‘ℂfld))
108106cnfldtopon 22586 . . . . . . . . . . . . . . . . . . . . . 22 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
109108toponunii 20721 . . . . . . . . . . . . . . . . . . . . 21 ℂ = (TopOpen‘ℂfld)
11012, 109hmeof1o 21567 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ∈ ((𝐽 ×t 𝐽)Homeo(TopOpen‘ℂfld)) → 𝐺:(ℝ × ℝ)–1-1-onto→ℂ)
111 f1of 6137 . . . . . . . . . . . . . . . . . . . 20 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → 𝐺:(ℝ × ℝ)⟶ℂ)
112107, 110, 111mp2b 10 . . . . . . . . . . . . . . . . . . 19 𝐺:(ℝ × ℝ)⟶ℂ
113112a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝐺:(ℝ × ℝ)⟶ℂ)
114113, 99ffvelrnd 6360 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝐺𝑋) ∈ ℂ)
115112a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝐺:(ℝ × ℝ)⟶ℂ)
116115ffvelrnda 6359 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝐺𝑥) ∈ ℂ)
117 sqsscirc2 29955 . . . . . . . . . . . . . . . . 17 ((((𝐺𝑋) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ) ∧ 𝑑 ∈ ℝ+) → (((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2)) → (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑))
118114, 116, 101, 117syl21anc 1325 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2)) → (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑))
119118imp 445 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ ((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2))) → (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑)
120101rpxrd 11873 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝑑 ∈ ℝ*)
121120adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → 𝑑 ∈ ℝ*)
122 cnxmet 22576 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) ∈ (∞Met‘ℂ)
123121, 122jctil 560 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → ((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑑 ∈ ℝ*))
124114adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → (𝐺𝑋) ∈ ℂ)
125116adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → (𝐺𝑥) ∈ ℂ)
126124, 125jca 554 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → ((𝐺𝑋) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ))
127 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (abs ∘ − ) = (abs ∘ − )
128127cnmetdval 22574 . . . . . . . . . . . . . . . . . 18 (((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑋) ∈ ℂ) → ((𝐺𝑥)(abs ∘ − )(𝐺𝑋)) = (abs‘((𝐺𝑥) − (𝐺𝑋))))
129125, 124, 128syl2anc 693 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → ((𝐺𝑥)(abs ∘ − )(𝐺𝑋)) = (abs‘((𝐺𝑥) − (𝐺𝑋))))
130 simpr 477 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑)
131129, 130eqbrtrd 4675 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → ((𝐺𝑥)(abs ∘ − )(𝐺𝑋)) < 𝑑)
132 elbl3 22197 . . . . . . . . . . . . . . . . 17 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑑 ∈ ℝ*) ∧ ((𝐺𝑋) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ)) → ((𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ↔ ((𝐺𝑥)(abs ∘ − )(𝐺𝑋)) < 𝑑))
133132biimpar 502 . . . . . . . . . . . . . . . 16 (((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑑 ∈ ℝ*) ∧ ((𝐺𝑋) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ)) ∧ ((𝐺𝑥)(abs ∘ − )(𝐺𝑋)) < 𝑑) → (𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))
134123, 126, 131, 133syl21anc 1325 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → (𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))
135119, 134syldan 487 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ ((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2))) → (𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))
136135ex 450 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2)) → (𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
137105, 136syld 47 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → (𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
138 f1ocnv 6149 . . . . . . . . . . . . . . 15 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → 𝐺:ℂ–1-1-onto→(ℝ × ℝ))
139107, 110, 138mp2b 10 . . . . . . . . . . . . . 14 𝐺:ℂ–1-1-onto→(ℝ × ℝ)
140 f1ofun 6139 . . . . . . . . . . . . . 14 (𝐺:ℂ–1-1-onto→(ℝ × ℝ) → Fun 𝐺)
141139, 140ax-mp 5 . . . . . . . . . . . . 13 Fun 𝐺
142 f1odm 6141 . . . . . . . . . . . . . . 15 (𝐺:ℂ–1-1-onto→(ℝ × ℝ) → dom 𝐺 = ℂ)
143139, 142ax-mp 5 . . . . . . . . . . . . . 14 dom 𝐺 = ℂ
144116, 143syl6eleqr 2712 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝐺𝑥) ∈ dom 𝐺)
145 funfvima 6492 . . . . . . . . . . . . 13 ((Fun 𝐺 ∧ (𝐺𝑥) ∈ dom 𝐺) → ((𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) → (𝐺‘(𝐺𝑥)) ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
146141, 144, 145sylancr 695 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → ((𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) → (𝐺‘(𝐺𝑥)) ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
147107, 110mp1i 13 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝐺:(ℝ × ℝ)–1-1-onto→ℂ)
148 f1ocnvfv1 6532 . . . . . . . . . . . . . . 15 ((𝐺:(ℝ × ℝ)–1-1-onto→ℂ ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝐺‘(𝐺𝑥)) = 𝑥)
149147, 100, 148syl2anc 693 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝐺‘(𝐺𝑥)) = 𝑥)
150149eleq1d 2686 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → ((𝐺‘(𝐺𝑥)) ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ↔ 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
151150biimpd 219 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → ((𝐺‘(𝐺𝑥)) ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) → 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
152137, 146, 1513syld 60 . . . . . . . . . . 11 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
153152imp 445 . . . . . . . . . 10 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ 𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))) → 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
15495, 153syl 17 . . . . . . . . 9 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))) → 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
155154ex 450 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
156155ssrdv 3609 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
157156ralrimiva 2966 . . . . . 6 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∀𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
158103mpt2fun 6762 . . . . . . . . . 10 Fun 𝐺
159158a1i 11 . . . . . . . . 9 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → Fun 𝐺)
16013sselda 3603 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → 𝑋 ∈ (ℝ × ℝ))
161 f1odm 6141 . . . . . . . . . . 11 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → dom 𝐺 = (ℝ × ℝ))
162107, 110, 161mp2b 10 . . . . . . . . . 10 dom 𝐺 = (ℝ × ℝ)
163160, 162syl6eleqr 2712 . . . . . . . . 9 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → 𝑋 ∈ dom 𝐺)
164 simpr 477 . . . . . . . . 9 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → 𝑋𝐴)
165 funfvima 6492 . . . . . . . . . 10 ((Fun 𝐺𝑋 ∈ dom 𝐺) → (𝑋𝐴 → (𝐺𝑋) ∈ (𝐺𝐴)))
166165imp 445 . . . . . . . . 9 (((Fun 𝐺𝑋 ∈ dom 𝐺) ∧ 𝑋𝐴) → (𝐺𝑋) ∈ (𝐺𝐴))
167159, 163, 164, 166syl21anc 1325 . . . . . . . 8 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → (𝐺𝑋) ∈ (𝐺𝐴))
168 hmeoima 21568 . . . . . . . . . . 11 ((𝐺 ∈ ((𝐽 ×t 𝐽)Homeo(TopOpen‘ℂfld)) ∧ 𝐴 ∈ (𝐽 ×t 𝐽)) → (𝐺𝐴) ∈ (TopOpen‘ℂfld))
169107, 168mpan 706 . . . . . . . . . 10 (𝐴 ∈ (𝐽 ×t 𝐽) → (𝐺𝐴) ∈ (TopOpen‘ℂfld))
170106cnfldtopn 22585 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
171170elmopn2 22250 . . . . . . . . . . . 12 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ((𝐺𝐴) ∈ (TopOpen‘ℂfld) ↔ ((𝐺𝐴) ⊆ ℂ ∧ ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))))
172122, 171ax-mp 5 . . . . . . . . . . 11 ((𝐺𝐴) ∈ (TopOpen‘ℂfld) ↔ ((𝐺𝐴) ⊆ ℂ ∧ ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴)))
173172simprbi 480 . . . . . . . . . 10 ((𝐺𝐴) ∈ (TopOpen‘ℂfld) → ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))
174169, 173syl 17 . . . . . . . . 9 (𝐴 ∈ (𝐽 ×t 𝐽) → ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))
175174adantr 481 . . . . . . . 8 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))
176 oveq1 6657 . . . . . . . . . . 11 (𝑚 = (𝐺𝑋) → (𝑚(ball‘(abs ∘ − ))𝑑) = ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))
177176sseq1d 3632 . . . . . . . . . 10 (𝑚 = (𝐺𝑋) → ((𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) ↔ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴)))
178177rexbidv 3052 . . . . . . . . 9 (𝑚 = (𝐺𝑋) → (∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) ↔ ∃𝑑 ∈ ℝ+ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴)))
179178rspcva 3307 . . . . . . . 8 (((𝐺𝑋) ∈ (𝐺𝐴) ∧ ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴)) → ∃𝑑 ∈ ℝ+ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))
180167, 175, 179syl2anc 693 . . . . . . 7 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))
181 imass2 5501 . . . . . . . . . 10 (((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) → (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ (𝐺 “ (𝐺𝐴)))
182 f1of1 6136 . . . . . . . . . . . . 13 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → 𝐺:(ℝ × ℝ)–1-1→ℂ)
183107, 110, 182mp2b 10 . . . . . . . . . . . 12 𝐺:(ℝ × ℝ)–1-1→ℂ
184 f1imacnv 6153 . . . . . . . . . . . 12 ((𝐺:(ℝ × ℝ)–1-1→ℂ ∧ 𝐴 ⊆ (ℝ × ℝ)) → (𝐺 “ (𝐺𝐴)) = 𝐴)
185183, 13, 184sylancr 695 . . . . . . . . . . 11 (𝐴 ∈ (𝐽 ×t 𝐽) → (𝐺 “ (𝐺𝐴)) = 𝐴)
186185sseq2d 3633 . . . . . . . . . 10 (𝐴 ∈ (𝐽 ×t 𝐽) → ((𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ (𝐺 “ (𝐺𝐴)) ↔ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
187181, 186syl5ib 234 . . . . . . . . 9 (𝐴 ∈ (𝐽 ×t 𝐽) → (((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) → (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
188187reximdv 3016 . . . . . . . 8 (𝐴 ∈ (𝐽 ×t 𝐽) → (∃𝑑 ∈ ℝ+ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) → ∃𝑑 ∈ ℝ+ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
189188adantr 481 . . . . . . 7 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → (∃𝑑 ∈ ℝ+ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) → ∃𝑑 ∈ ℝ+ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
190180, 189mpd 15 . . . . . 6 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴)
191 r19.29 3072 . . . . . 6 ((∀𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ ∃𝑑 ∈ ℝ+ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴) → ∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
192157, 190, 191syl2anc 693 . . . . 5 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
193 sstr 3611 . . . . . 6 ((((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)
194193reximi 3011 . . . . 5 (∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴) → ∃𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)
195192, 194syl 17 . . . 4 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)
196 r19.29 3072 . . . 4 ((∀𝑑 ∈ ℝ+ 𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ∃𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴) → ∃𝑑 ∈ ℝ+ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴))
19770, 195, 196syl2anc 693 . . 3 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴))
198 r19.29 3072 . . 3 ((∀𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ ∃𝑑 ∈ ℝ+ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)) → ∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)))
19951, 197, 198syl2anc 693 . 2 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)))
200 eleq2 2690 . . . . 5 (𝑟 = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → (𝑋𝑟𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))))
201 sseq1 3626 . . . . 5 (𝑟 = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → (𝑟𝐴 ↔ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴))
202200, 201anbi12d 747 . . . 4 (𝑟 = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → ((𝑋𝑟𝑟𝐴) ↔ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)))
203202rspcev 3309 . . 3 ((((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)) → ∃𝑟𝐵 (𝑋𝑟𝑟𝐴))
204203rexlimivw 3029 . 2 (∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)) → ∃𝑟𝐵 (𝑋𝑟𝑟𝐴))
205199, 204syl 17 1 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑟𝐵 (𝑋𝑟𝑟𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574  𝒫 cpw 4158   cuni 4436   class class class wbr 4653   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  ccom 5118  Fun wfun 5882   Fn wfn 5883  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  cc 9934  cr 9935  ici 9938   + caddc 9939   · cmul 9941  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  +crp 11832  (,)cioo 12175  cre 13837  cim 13838  abscabs 13974  TopOpenctopn 16082  topGenctg 16098  ∞Metcxmt 19731  ballcbl 19733  fldccnfld 19746  Topctop 20698   ×t ctx 21363  Homeochmeo 21556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681
This theorem is referenced by:  dya2iocnei  30344
  Copyright terms: Public domain W3C validator