| Step | Hyp | Ref
| Expression |
| 1 | | r19.26 3064 |
. . . . 5
⊢
(∀𝑛 ∈
ℕ (𝐴 ∈ dom vol
∧ (vol‘𝐴) ∈
ℝ) ↔ (∀𝑛
∈ ℕ 𝐴 ∈ dom
vol ∧ ∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ)) |
| 2 | | eqid 2622 |
. . . . . 6
⊢ seq1( + ,
(𝑛 ∈ ℕ ↦
(vol‘𝐴))) = seq1( + ,
(𝑛 ∈ ℕ ↦
(vol‘𝐴))) |
| 3 | | eqid 2622 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦
(vol‘𝐴)) = (𝑛 ∈ ℕ ↦
(vol‘𝐴)) |
| 4 | 2, 3 | voliun 23322 |
. . . . 5
⊢
((∀𝑛 ∈
ℕ (𝐴 ∈ dom vol
∧ (vol‘𝐴) ∈
ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘∪ 𝑛 ∈ ℕ 𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, <
)) |
| 5 | 1, 4 | sylanbr 490 |
. . . 4
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ ∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘∪ 𝑛 ∈ ℕ 𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, <
)) |
| 6 | 5 | an32s 846 |
. . 3
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧
∀𝑛 ∈ ℕ
(vol‘𝐴) ∈
ℝ) → (vol‘∪ 𝑛 ∈ ℕ 𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦
(vol‘𝐴))),
ℝ*, < )) |
| 7 | | nfra1 2941 |
. . . . . . 7
⊢
Ⅎ𝑛∀𝑛 ∈ ℕ 𝐴 ∈ dom vol |
| 8 | | nfra1 2941 |
. . . . . . 7
⊢
Ⅎ𝑛∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ |
| 9 | 7, 8 | nfan 1828 |
. . . . . 6
⊢
Ⅎ𝑛(∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈
ℝ) |
| 10 | | simpr 477 |
. . . . . . . . . 10
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑛 ∈ ℕ)
→ 𝑛 ∈
ℕ) |
| 11 | | rspa 2930 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑛 ∈ ℕ)
→ 𝐴 ∈ dom
vol) |
| 12 | | volf 23297 |
. . . . . . . . . . . 12
⊢ vol:dom
vol⟶(0[,]+∞) |
| 13 | 12 | ffvelrni 6358 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ dom vol →
(vol‘𝐴) ∈
(0[,]+∞)) |
| 14 | 11, 13 | syl 17 |
. . . . . . . . . 10
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑛 ∈ ℕ)
→ (vol‘𝐴) ∈
(0[,]+∞)) |
| 15 | 3 | fvmpt2 6291 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧
(vol‘𝐴) ∈
(0[,]+∞)) → ((𝑛
∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴)) |
| 16 | 10, 14, 15 | syl2anc 693 |
. . . . . . . . 9
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑛 ∈ ℕ)
→ ((𝑛 ∈ ℕ
↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴)) |
| 17 | 16 | adantlr 751 |
. . . . . . . 8
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ ∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ) ∧ 𝑛
∈ ℕ) → ((𝑛
∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴)) |
| 18 | 17 | ex 450 |
. . . . . . 7
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ ∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ) → (𝑛
∈ ℕ → ((𝑛
∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴))) |
| 19 | 9, 18 | ralrimi 2957 |
. . . . . 6
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ ∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ) → ∀𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = (vol‘𝐴)) |
| 20 | 9, 19 | esumeq2d 30099 |
. . . . 5
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ ∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ) → Σ*𝑛 ∈ ℕ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = Σ*𝑛 ∈ ℕ(vol‘𝐴)) |
| 21 | | simpr 477 |
. . . . . . . . 9
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ ∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ) → ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) |
| 22 | 21 | r19.21bi 2932 |
. . . . . . . 8
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ ∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ) ∧ 𝑛
∈ ℕ) → (vol‘𝐴) ∈ ℝ) |
| 23 | 14 | adantlr 751 |
. . . . . . . . 9
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ ∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ) ∧ 𝑛
∈ ℕ) → (vol‘𝐴) ∈ (0[,]+∞)) |
| 24 | | 0xr 10086 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ* |
| 25 | | pnfxr 10092 |
. . . . . . . . . . 11
⊢ +∞
∈ ℝ* |
| 26 | | elicc1 12219 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ*) →
((vol‘𝐴) ∈
(0[,]+∞) ↔ ((vol‘𝐴) ∈ ℝ* ∧ 0 ≤
(vol‘𝐴) ∧
(vol‘𝐴) ≤
+∞))) |
| 27 | 24, 25, 26 | mp2an 708 |
. . . . . . . . . 10
⊢
((vol‘𝐴)
∈ (0[,]+∞) ↔ ((vol‘𝐴) ∈ ℝ* ∧ 0 ≤
(vol‘𝐴) ∧
(vol‘𝐴) ≤
+∞)) |
| 28 | 27 | simp2bi 1077 |
. . . . . . . . 9
⊢
((vol‘𝐴)
∈ (0[,]+∞) → 0 ≤ (vol‘𝐴)) |
| 29 | 23, 28 | syl 17 |
. . . . . . . 8
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ ∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ) ∧ 𝑛
∈ ℕ) → 0 ≤ (vol‘𝐴)) |
| 30 | | ltpnf 11954 |
. . . . . . . . 9
⊢
((vol‘𝐴)
∈ ℝ → (vol‘𝐴) < +∞) |
| 31 | 22, 30 | syl 17 |
. . . . . . . 8
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ ∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ) ∧ 𝑛
∈ ℕ) → (vol‘𝐴) < +∞) |
| 32 | | 0re 10040 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
| 33 | | elico2 12237 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ +∞ ∈ ℝ*) →
((vol‘𝐴) ∈
(0[,)+∞) ↔ ((vol‘𝐴) ∈ ℝ ∧ 0 ≤
(vol‘𝐴) ∧
(vol‘𝐴) <
+∞))) |
| 34 | 32, 25, 33 | mp2an 708 |
. . . . . . . 8
⊢
((vol‘𝐴)
∈ (0[,)+∞) ↔ ((vol‘𝐴) ∈ ℝ ∧ 0 ≤
(vol‘𝐴) ∧
(vol‘𝐴) <
+∞)) |
| 35 | 22, 29, 31, 34 | syl3anbrc 1246 |
. . . . . . 7
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ ∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ) ∧ 𝑛
∈ ℕ) → (vol‘𝐴) ∈ (0[,)+∞)) |
| 36 | 9, 35, 3 | fmptdf 6387 |
. . . . . 6
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ ∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ) → (𝑛
∈ ℕ ↦ (vol‘𝐴)):ℕ⟶(0[,)+∞)) |
| 37 | | nfmpt1 4747 |
. . . . . . 7
⊢
Ⅎ𝑛(𝑛 ∈ ℕ ↦ (vol‘𝐴)) |
| 38 | 37 | esumfsupre 30133 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ↦
(vol‘𝐴)):ℕ⟶(0[,)+∞) →
Σ*𝑛 ∈
ℕ((𝑛 ∈ ℕ
↦ (vol‘𝐴))‘𝑛) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, <
)) |
| 39 | 36, 38 | syl 17 |
. . . . 5
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ ∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ) → Σ*𝑛 ∈ ℕ((𝑛 ∈ ℕ ↦ (vol‘𝐴))‘𝑛) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, <
)) |
| 40 | 20, 39 | eqtr3d 2658 |
. . . 4
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ ∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ) → Σ*𝑛 ∈ ℕ(vol‘𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, <
)) |
| 41 | 40 | adantlr 751 |
. . 3
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧
∀𝑛 ∈ ℕ
(vol‘𝐴) ∈
ℝ) → Σ*𝑛 ∈ ℕ(vol‘𝐴) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘𝐴))), ℝ*, <
)) |
| 42 | 6, 41 | eqtr4d 2659 |
. 2
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧
∀𝑛 ∈ ℕ
(vol‘𝐴) ∈
ℝ) → (vol‘∪ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴)) |
| 43 | | simpr 477 |
. . . . . . . 8
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧
∃𝑛 ∈ ℕ
(vol‘𝐴) = +∞)
→ ∃𝑛 ∈
ℕ (vol‘𝐴) =
+∞) |
| 44 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑘(vol‘𝐴) = +∞ |
| 45 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛vol |
| 46 | | nfcsb1v 3549 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛⦋𝑘 / 𝑛⦌𝐴 |
| 47 | 45, 46 | nffv 6198 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(vol‘⦋𝑘 / 𝑛⦌𝐴) |
| 48 | 47 | nfeq1 2778 |
. . . . . . . . 9
⊢
Ⅎ𝑛(vol‘⦋𝑘 / 𝑛⦌𝐴) = +∞ |
| 49 | | csbeq1a 3542 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → 𝐴 = ⦋𝑘 / 𝑛⦌𝐴) |
| 50 | 49 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (vol‘𝐴) = (vol‘⦋𝑘 / 𝑛⦌𝐴)) |
| 51 | 50 | eqeq1d 2624 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → ((vol‘𝐴) = +∞ ↔
(vol‘⦋𝑘
/ 𝑛⦌𝐴) = +∞)) |
| 52 | 44, 48, 51 | cbvrex 3168 |
. . . . . . . 8
⊢
(∃𝑛 ∈
ℕ (vol‘𝐴) =
+∞ ↔ ∃𝑘
∈ ℕ (vol‘⦋𝑘 / 𝑛⦌𝐴) = +∞) |
| 53 | 43, 52 | sylib 208 |
. . . . . . 7
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧
∃𝑛 ∈ ℕ
(vol‘𝐴) = +∞)
→ ∃𝑘 ∈
ℕ (vol‘⦋𝑘 / 𝑛⦌𝐴) = +∞) |
| 54 | 46 | nfel1 2779 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛⦋𝑘 / 𝑛⦌𝐴 ∈ dom vol |
| 55 | 49 | eleq1d 2686 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (𝐴 ∈ dom vol ↔ ⦋𝑘 / 𝑛⦌𝐴 ∈ dom vol)) |
| 56 | 54, 55 | rspc 3303 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ →
(∀𝑛 ∈ ℕ
𝐴 ∈ dom vol →
⦋𝑘 / 𝑛⦌𝐴 ∈ dom vol)) |
| 57 | 56 | impcom 446 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑘 ∈ ℕ)
→ ⦋𝑘 /
𝑛⦌𝐴 ∈ dom
vol) |
| 58 | | iunmbl 23321 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ ∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol) |
| 59 | 58 | adantr 481 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑘 ∈ ℕ)
→ ∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol) |
| 60 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛ℕ |
| 61 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛𝑘 |
| 62 | 60, 61, 46, 49 | ssiun2sf 29378 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ →
⦋𝑘 / 𝑛⦌𝐴 ⊆ ∪
𝑛 ∈ ℕ 𝐴) |
| 63 | 62 | adantl 482 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑘 ∈ ℕ)
→ ⦋𝑘 /
𝑛⦌𝐴 ⊆ ∪ 𝑛 ∈ ℕ 𝐴) |
| 64 | | volss 23301 |
. . . . . . . . . . 11
⊢
((⦋𝑘 /
𝑛⦌𝐴 ∈ dom vol ∧ ∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ ⦋𝑘 / 𝑛⦌𝐴 ⊆ ∪
𝑛 ∈ ℕ 𝐴) →
(vol‘⦋𝑘
/ 𝑛⦌𝐴) ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴)) |
| 65 | 57, 59, 63, 64 | syl3anc 1326 |
. . . . . . . . . 10
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑘 ∈ ℕ)
→ (vol‘⦋𝑘 / 𝑛⦌𝐴) ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴)) |
| 66 | 65 | adantlr 751 |
. . . . . . . . 9
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧ 𝑘 ∈ ℕ) →
(vol‘⦋𝑘
/ 𝑛⦌𝐴) ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴)) |
| 67 | 66 | adantlr 751 |
. . . . . . . 8
⊢
((((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧
∃𝑛 ∈ ℕ
(vol‘𝐴) = +∞)
∧ 𝑘 ∈ ℕ)
→ (vol‘⦋𝑘 / 𝑛⦌𝐴) ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴)) |
| 68 | 67 | ralrimiva 2966 |
. . . . . . 7
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧
∃𝑛 ∈ ℕ
(vol‘𝐴) = +∞)
→ ∀𝑘 ∈
ℕ (vol‘⦋𝑘 / 𝑛⦌𝐴) ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴)) |
| 69 | | r19.29r 3073 |
. . . . . . 7
⊢
((∃𝑘 ∈
ℕ (vol‘⦋𝑘 / 𝑛⦌𝐴) = +∞ ∧ ∀𝑘 ∈ ℕ
(vol‘⦋𝑘
/ 𝑛⦌𝐴) ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴)) → ∃𝑘 ∈ ℕ
((vol‘⦋𝑘 / 𝑛⦌𝐴) = +∞ ∧
(vol‘⦋𝑘
/ 𝑛⦌𝐴) ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴))) |
| 70 | 53, 68, 69 | syl2anc 693 |
. . . . . 6
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧
∃𝑛 ∈ ℕ
(vol‘𝐴) = +∞)
→ ∃𝑘 ∈
ℕ ((vol‘⦋𝑘 / 𝑛⦌𝐴) = +∞ ∧
(vol‘⦋𝑘
/ 𝑛⦌𝐴) ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴))) |
| 71 | | breq1 4656 |
. . . . . . . 8
⊢
((vol‘⦋𝑘 / 𝑛⦌𝐴) = +∞ →
((vol‘⦋𝑘 / 𝑛⦌𝐴) ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴) ↔ +∞ ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴))) |
| 72 | 71 | biimpa 501 |
. . . . . . 7
⊢
(((vol‘⦋𝑘 / 𝑛⦌𝐴) = +∞ ∧
(vol‘⦋𝑘
/ 𝑛⦌𝐴) ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴)) → +∞ ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴)) |
| 73 | 72 | reximi 3011 |
. . . . . 6
⊢
(∃𝑘 ∈
ℕ ((vol‘⦋𝑘 / 𝑛⦌𝐴) = +∞ ∧
(vol‘⦋𝑘
/ 𝑛⦌𝐴) ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴)) → ∃𝑘 ∈ ℕ +∞ ≤
(vol‘∪ 𝑛 ∈ ℕ 𝐴)) |
| 74 | 70, 73 | syl 17 |
. . . . 5
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧
∃𝑛 ∈ ℕ
(vol‘𝐴) = +∞)
→ ∃𝑘 ∈
ℕ +∞ ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴)) |
| 75 | | 1nn 11031 |
. . . . . 6
⊢ 1 ∈
ℕ |
| 76 | | ne0i 3921 |
. . . . . 6
⊢ (1 ∈
ℕ → ℕ ≠ ∅) |
| 77 | | r19.9rzv 4065 |
. . . . . 6
⊢ (ℕ
≠ ∅ → (+∞ ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴) ↔ ∃𝑘 ∈ ℕ +∞ ≤
(vol‘∪ 𝑛 ∈ ℕ 𝐴))) |
| 78 | 75, 76, 77 | mp2b 10 |
. . . . 5
⊢ (+∞
≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴) ↔ ∃𝑘 ∈ ℕ +∞ ≤
(vol‘∪ 𝑛 ∈ ℕ 𝐴)) |
| 79 | 74, 78 | sylibr 224 |
. . . 4
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧
∃𝑛 ∈ ℕ
(vol‘𝐴) = +∞)
→ +∞ ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴)) |
| 80 | | iccssxr 12256 |
. . . . . . . 8
⊢
(0[,]+∞) ⊆ ℝ* |
| 81 | 12 | ffvelrni 6358 |
. . . . . . . 8
⊢ (∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → (vol‘∪ 𝑛 ∈ ℕ 𝐴) ∈ (0[,]+∞)) |
| 82 | 80, 81 | sseldi 3601 |
. . . . . . 7
⊢ (∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → (vol‘∪ 𝑛 ∈ ℕ 𝐴) ∈
ℝ*) |
| 83 | 58, 82 | syl 17 |
. . . . . 6
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ (vol‘∪ 𝑛 ∈ ℕ 𝐴) ∈
ℝ*) |
| 84 | 83 | ad2antrr 762 |
. . . . 5
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧
∃𝑛 ∈ ℕ
(vol‘𝐴) = +∞)
→ (vol‘∪ 𝑛 ∈ ℕ 𝐴) ∈
ℝ*) |
| 85 | | xgepnf 11996 |
. . . . 5
⊢
((vol‘∪ 𝑛 ∈ ℕ 𝐴) ∈ ℝ* →
(+∞ ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴) ↔ (vol‘∪ 𝑛 ∈ ℕ 𝐴) = +∞)) |
| 86 | 84, 85 | syl 17 |
. . . 4
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧
∃𝑛 ∈ ℕ
(vol‘𝐴) = +∞)
→ (+∞ ≤ (vol‘∪ 𝑛 ∈ ℕ 𝐴) ↔ (vol‘∪ 𝑛 ∈ ℕ 𝐴) = +∞)) |
| 87 | 79, 86 | mpbid 222 |
. . 3
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧
∃𝑛 ∈ ℕ
(vol‘𝐴) = +∞)
→ (vol‘∪ 𝑛 ∈ ℕ 𝐴) = +∞) |
| 88 | | nfdisj1 4633 |
. . . . . 6
⊢
Ⅎ𝑛Disj
𝑛 ∈ ℕ 𝐴 |
| 89 | 7, 88 | nfan 1828 |
. . . . 5
⊢
Ⅎ𝑛(∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) |
| 90 | | nfre1 3005 |
. . . . 5
⊢
Ⅎ𝑛∃𝑛 ∈ ℕ (vol‘𝐴) = +∞ |
| 91 | 89, 90 | nfan 1828 |
. . . 4
⊢
Ⅎ𝑛((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ Disj 𝑛 ∈ ℕ 𝐴) ∧ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) |
| 92 | | nnex 11026 |
. . . . 5
⊢ ℕ
∈ V |
| 93 | 92 | a1i 11 |
. . . 4
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧
∃𝑛 ∈ ℕ
(vol‘𝐴) = +∞)
→ ℕ ∈ V) |
| 94 | 14 | 3ad2antr3 1228 |
. . . . 5
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ (Disj 𝑛 ∈
ℕ 𝐴 ∧
∃𝑛 ∈ ℕ
(vol‘𝐴) = +∞
∧ 𝑛 ∈ ℕ))
→ (vol‘𝐴) ∈
(0[,]+∞)) |
| 95 | 94 | 3anassrs 1290 |
. . . 4
⊢
((((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧
∃𝑛 ∈ ℕ
(vol‘𝐴) = +∞)
∧ 𝑛 ∈ ℕ)
→ (vol‘𝐴) ∈
(0[,]+∞)) |
| 96 | 91, 93, 95, 43 | esumpinfval 30135 |
. . 3
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧
∃𝑛 ∈ ℕ
(vol‘𝐴) = +∞)
→ Σ*𝑛
∈ ℕ(vol‘𝐴)
= +∞) |
| 97 | 87, 96 | eqtr4d 2659 |
. 2
⊢
(((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) ∧
∃𝑛 ∈ ℕ
(vol‘𝐴) = +∞)
→ (vol‘∪ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴)) |
| 98 | | exmid 431 |
. . . . 5
⊢
(∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ ∨ ¬ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) |
| 99 | | rexnal 2995 |
. . . . . 6
⊢
(∃𝑛 ∈
ℕ ¬ (vol‘𝐴)
∈ ℝ ↔ ¬ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ) |
| 100 | 99 | orbi2i 541 |
. . . . 5
⊢
((∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ ∨ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) ↔
(∀𝑛 ∈ ℕ
(vol‘𝐴) ∈
ℝ ∨ ¬ ∀𝑛 ∈ ℕ (vol‘𝐴) ∈ ℝ)) |
| 101 | 98, 100 | mpbir 221 |
. . . 4
⊢
(∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ ∨ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈
ℝ) |
| 102 | | r19.29 3072 |
. . . . . . 7
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ ∃𝑛 ∈
ℕ ¬ (vol‘𝐴)
∈ ℝ) → ∃𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ ¬ (vol‘𝐴) ∈
ℝ)) |
| 103 | | xrge0nre 12277 |
. . . . . . . . 9
⊢
(((vol‘𝐴)
∈ (0[,]+∞) ∧ ¬ (vol‘𝐴) ∈ ℝ) → (vol‘𝐴) = +∞) |
| 104 | 13, 103 | sylan 488 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom vol ∧ ¬
(vol‘𝐴) ∈
ℝ) → (vol‘𝐴) = +∞) |
| 105 | 104 | reximi 3011 |
. . . . . . 7
⊢
(∃𝑛 ∈
ℕ (𝐴 ∈ dom vol
∧ ¬ (vol‘𝐴)
∈ ℝ) → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) |
| 106 | 102, 105 | syl 17 |
. . . . . 6
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ ∃𝑛 ∈
ℕ ¬ (vol‘𝐴)
∈ ℝ) → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞) |
| 107 | 106 | ex 450 |
. . . . 5
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ (∃𝑛 ∈
ℕ ¬ (vol‘𝐴)
∈ ℝ → ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)) |
| 108 | 107 | orim2d 885 |
. . . 4
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ ((∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ ∨ ∃𝑛 ∈ ℕ ¬ (vol‘𝐴) ∈ ℝ) →
(∀𝑛 ∈ ℕ
(vol‘𝐴) ∈
ℝ ∨ ∃𝑛
∈ ℕ (vol‘𝐴) = +∞))) |
| 109 | 101, 108 | mpi 20 |
. . 3
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ (∀𝑛 ∈
ℕ (vol‘𝐴)
∈ ℝ ∨ ∃𝑛 ∈ ℕ (vol‘𝐴) = +∞)) |
| 110 | 109 | adantr 481 |
. 2
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) →
(∀𝑛 ∈ ℕ
(vol‘𝐴) ∈
ℝ ∨ ∃𝑛
∈ ℕ (vol‘𝐴) = +∞)) |
| 111 | 42, 97, 110 | mpjaodan 827 |
1
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ Disj 𝑛 ∈
ℕ 𝐴) →
(vol‘∪ 𝑛 ∈ ℕ 𝐴) = Σ*𝑛 ∈ ℕ(vol‘𝐴)) |