Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1 Structured version   Visualization version   GIF version

Theorem archiabllem1 29747
Description: Archimedean ordered groups with a minimal positive value are abelian. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem1.u (𝜑𝑈𝐵)
archiabllem1.p (𝜑0 < 𝑈)
archiabllem1.s ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
Assertion
Ref Expression
archiabllem1 (𝜑𝑊 ∈ Abel)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑈   𝑥,𝑊   𝜑,𝑥   𝑥, ·   𝑥, 0   𝑥, <   𝑥,

Proof of Theorem archiabllem1
Dummy variables 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 archiabllem.g . . 3 (𝜑𝑊 ∈ oGrp)
2 ogrpgrp 29703 . . 3 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
31, 2syl 17 . 2 (𝜑𝑊 ∈ Grp)
4 simplr 792 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℤ)
54zcnd 11483 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℂ)
6 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
76zcnd 11483 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℂ)
85, 7addcomd 10238 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝑚 + 𝑛) = (𝑛 + 𝑚))
98oveq1d 6665 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 + 𝑛) · 𝑈) = ((𝑛 + 𝑚) · 𝑈))
103ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑊 ∈ Grp)
11 archiabllem1.u . . . . . . . . . . . 12 (𝜑𝑈𝐵)
1211ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑈𝐵)
13 archiabllem.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑊)
14 archiabllem.m . . . . . . . . . . . 12 · = (.g𝑊)
15 eqid 2622 . . . . . . . . . . . 12 (+g𝑊) = (+g𝑊)
1613, 14, 15mulgdir 17573 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑈𝐵)) → ((𝑚 + 𝑛) · 𝑈) = ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)))
1710, 4, 6, 12, 16syl13anc 1328 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 + 𝑛) · 𝑈) = ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)))
1813, 14, 15mulgdir 17573 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵)) → ((𝑛 + 𝑚) · 𝑈) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
1910, 6, 4, 12, 18syl13anc 1328 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑛 + 𝑚) · 𝑈) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
209, 17, 193eqtr3d 2664 . . . . . . . . 9 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2120adantllr 755 . . . . . . . 8 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2221adantlr 751 . . . . . . 7 (((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2322adantr 481 . . . . . 6 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
24 simpllr 799 . . . . . . 7 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → 𝑦 = (𝑚 · 𝑈))
25 simpr 477 . . . . . . 7 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → 𝑧 = (𝑛 · 𝑈))
2624, 25oveq12d 6668 . . . . . 6 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → (𝑦(+g𝑊)𝑧) = ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)))
2725, 24oveq12d 6668 . . . . . 6 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → (𝑧(+g𝑊)𝑦) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2823, 26, 273eqtr4d 2666 . . . . 5 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
29 simplll 798 . . . . . 6 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → 𝜑)
30 simpr1r 1119 . . . . . . 7 ((𝜑 ∧ ((𝑦𝐵𝑧𝐵) ∧ 𝑚 ∈ ℤ ∧ 𝑦 = (𝑚 · 𝑈))) → 𝑧𝐵)
31303anassrs 1290 . . . . . 6 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → 𝑧𝐵)
32 archiabllem.0 . . . . . . 7 0 = (0g𝑊)
33 archiabllem.e . . . . . . 7 = (le‘𝑊)
34 archiabllem.t . . . . . . 7 < = (lt‘𝑊)
35 archiabllem.a . . . . . . 7 (𝜑𝑊 ∈ Archi)
36 archiabllem1.p . . . . . . 7 (𝜑0 < 𝑈)
37 archiabllem1.s . . . . . . 7 ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
3813, 32, 33, 34, 14, 1, 35, 11, 36, 37archiabllem1b 29746 . . . . . 6 ((𝜑𝑧𝐵) → ∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑈))
3929, 31, 38syl2anc 693 . . . . 5 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑈))
4028, 39r19.29a 3078 . . . 4 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
4113, 32, 33, 34, 14, 1, 35, 11, 36, 37archiabllem1b 29746 . . . . 5 ((𝜑𝑦𝐵) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑈))
4241adantrr 753 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑈))
4340, 42r19.29a 3078 . . 3 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
4443ralrimivva 2971 . 2 (𝜑 → ∀𝑦𝐵𝑧𝐵 (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
4513, 15isabl2 18201 . 2 (𝑊 ∈ Abel ↔ (𝑊 ∈ Grp ∧ ∀𝑦𝐵𝑧𝐵 (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦)))
463, 44, 45sylanbrc 698 1 (𝜑𝑊 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650   + caddc 9939  cz 11377  Basecbs 15857  +gcplusg 15941  lecple 15948  0gc0g 16100  ltcplt 16941  Grpcgrp 17422  .gcmg 17540  Abelcabl 18194  oGrpcogrp 29698  Archicarchi 29731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-toset 17034  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-cmn 18195  df-abl 18196  df-omnd 29699  df-ogrp 29700  df-inftm 29732  df-archi 29733
This theorem is referenced by:  archiabl  29752
  Copyright terms: Public domain W3C validator