MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgndif Structured version   Visualization version   GIF version

Theorem psgndif 19948
Description: Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.)
Hypotheses
Ref Expression
psgndif.p 𝑃 = (Base‘(SymGrp‘𝑁))
psgndif.s 𝑆 = (pmSgn‘𝑁)
psgndif.z 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))
Assertion
Ref Expression
psgndif ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆𝑄)))
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑄,𝑞
Allowed substitution hints:   𝑆(𝑞)   𝑁(𝑞)   𝑍(𝑞)

Proof of Theorem psgndif
Dummy variables 𝑟 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgndif.p . . . . . . . . . . 11 𝑃 = (Base‘(SymGrp‘𝑁))
2 eqid 2622 . . . . . . . . . . 11 ran (pmTrsp‘(𝑁 ∖ {𝐾})) = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
3 eqid 2622 . . . . . . . . . . 11 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
4 eqid 2622 . . . . . . . . . . 11 (SymGrp‘𝑁) = (SymGrp‘𝑁)
5 eqid 2622 . . . . . . . . . . 11 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
61, 2, 3, 4, 5psgnfix2 19945 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)𝑄 = ((SymGrp‘𝑁) Σg 𝑟)))
76imp 445 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)𝑄 = ((SymGrp‘𝑁) Σg 𝑟))
87ad2antrr 762 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))) → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)𝑄 = ((SymGrp‘𝑁) Σg 𝑟))
91, 2, 3, 4, 5psgndiflemA 19947 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → (-1↑(#‘𝑤)) = (-1↑(#‘𝑟)))))
109imp 445 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁))) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → (-1↑(#‘𝑤)) = (-1↑(#‘𝑟))))
11103anassrs 1290 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → (-1↑(#‘𝑤)) = (-1↑(#‘𝑟))))
1211adantlrr 757 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → (-1↑(#‘𝑤)) = (-1↑(#‘𝑟))))
13 eqeq1 2626 . . . . . . . . . . . 12 (𝑠 = (-1↑(#‘𝑤)) → (𝑠 = (-1↑(#‘𝑟)) ↔ (-1↑(#‘𝑤)) = (-1↑(#‘𝑟))))
1413ad2antll 765 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))) → (𝑠 = (-1↑(#‘𝑟)) ↔ (-1↑(#‘𝑤)) = (-1↑(#‘𝑟))))
1514adantr 481 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑠 = (-1↑(#‘𝑟)) ↔ (-1↑(#‘𝑤)) = (-1↑(#‘𝑟))))
1612, 15sylibrd 249 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → 𝑠 = (-1↑(#‘𝑟))))
1716ralrimiva 2966 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))) → ∀𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → 𝑠 = (-1↑(#‘𝑟))))
188, 17r19.29imd 3074 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))) → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(#‘𝑟))))
1918ex 450 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → (((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))) → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(#‘𝑟)))))
2019rexlimdva 3031 . . . . 5 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))) → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(#‘𝑟)))))
211, 2, 3psgnfix1 19944 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))(𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)))
2221imp 445 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))(𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤))
2322ad2antrr 762 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(#‘𝑟)))) → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))(𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤))
24 simp-4l 806 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}))
25 simpr 477 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})))
2625adantr 481 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})))
27 simpr 477 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤))
28 simp-4r 807 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → 𝑟 ∈ Word ran (pmTrsp‘𝑁))
2926, 27, 283jca 1242 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → (𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)))
30 simpr 477 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) → 𝑄 = ((SymGrp‘𝑁) Σg 𝑟))
3130ad2antrr 762 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → 𝑄 = ((SymGrp‘𝑁) Σg 𝑟))
3224, 29, 31, 9syl3c 66 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → (-1↑(#‘𝑤)) = (-1↑(#‘𝑟)))
3332eqcomd 2628 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → (-1↑(#‘𝑟)) = (-1↑(#‘𝑤)))
3433ex 450 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) → (-1↑(#‘𝑟)) = (-1↑(#‘𝑤))))
3534adantlrr 757 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(#‘𝑟)))) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) → (-1↑(#‘𝑟)) = (-1↑(#‘𝑤))))
36 eqeq1 2626 . . . . . . . . . . . 12 (𝑠 = (-1↑(#‘𝑟)) → (𝑠 = (-1↑(#‘𝑤)) ↔ (-1↑(#‘𝑟)) = (-1↑(#‘𝑤))))
3736ad2antll 765 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(#‘𝑟)))) → (𝑠 = (-1↑(#‘𝑤)) ↔ (-1↑(#‘𝑟)) = (-1↑(#‘𝑤))))
3837adantr 481 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(#‘𝑟)))) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → (𝑠 = (-1↑(#‘𝑤)) ↔ (-1↑(#‘𝑟)) = (-1↑(#‘𝑤))))
3935, 38sylibrd 249 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(#‘𝑟)))) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) → 𝑠 = (-1↑(#‘𝑤))))
4039ralrimiva 2966 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(#‘𝑟)))) → ∀𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) → 𝑠 = (-1↑(#‘𝑤))))
4123, 40r19.29imd 3074 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(#‘𝑟)))) → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))))
4241ex 450 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → ((𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(#‘𝑟))) → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))))
4342rexlimdva 3031 . . . . 5 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(#‘𝑟))) → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))))
4420, 43impbid 202 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤))) ↔ ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(#‘𝑟)))))
4544iotabidv 5872 . . 3 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (℩𝑠𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))) = (℩𝑠𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(#‘𝑟)))))
46 diffi 8192 . . . . 5 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
4746ad2antrr 762 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑁 ∖ {𝐾}) ∈ Fin)
48 eqid 2622 . . . . . 6 {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
49 eqid 2622 . . . . . 6 (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
50 eqid 2622 . . . . . 6 (𝑁 ∖ {𝐾}) = (𝑁 ∖ {𝐾})
511, 48, 49, 50symgfixelsi 17855 . . . . 5 ((𝐾𝑁𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
5251adantll 750 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
53 psgndif.z . . . . 5 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))
543, 49, 2, 53psgnvalfi 17934 . . . 4 (((𝑁 ∖ {𝐾}) ∈ Fin ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (℩𝑠𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))))
5547, 52, 54syl2anc 693 . . 3 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (℩𝑠𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(#‘𝑤)))))
56 simpl 473 . . . 4 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → 𝑁 ∈ Fin)
57 elrabi 3359 . . . 4 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → 𝑄𝑃)
58 psgndif.s . . . . 5 𝑆 = (pmSgn‘𝑁)
594, 1, 5, 58psgnvalfi 17934 . . . 4 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑆𝑄) = (℩𝑠𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(#‘𝑟)))))
6056, 57, 59syl2an 494 . . 3 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑆𝑄) = (℩𝑠𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(#‘𝑟)))))
6145, 55, 603eqtr4d 2666 . 2 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆𝑄))
6261ex 450 1 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  cdif 3571  {csn 4177  ran crn 5115  cres 5116  cio 5849  cfv 5888  (class class class)co 6650  Fincfn 7955  1c1 9937  -cneg 10267  cexp 12860  #chash 13117  Word cword 13291  Basecbs 15857   Σg cgsu 16101  SymGrpcsymg 17797  pmTrspcpmtr 17861  pmSgncpsgn 17909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-tset 15960  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-ghm 17658  df-gim 17701  df-oppg 17776  df-symg 17798  df-pmtr 17862  df-psgn 17911
This theorem is referenced by:  zrhcopsgndif  19949
  Copyright terms: Public domain W3C validator