![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3brtr4g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
Ref | Expression |
---|---|
3brtr4g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
3brtr4g.2 | ⊢ 𝐶 = 𝐴 |
3brtr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3brtr4g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr4g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | 3brtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3brtr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | breq12i 4662 | . 2 ⊢ (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵) |
5 | 1, 4 | sylibr 224 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 class class class wbr 4653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 |
This theorem is referenced by: syl5eqbr 4688 limensuci 8136 infensuc 8138 rlimneg 14377 isumsup2 14578 crth 15483 4sqlem6 15647 gzrngunit 19812 matgsum 20243 ovolunlem1a 23264 ovolfiniun 23269 ioombl1lem1 23326 ioombl1lem4 23329 iblss 23571 itgle 23576 dvfsumlem3 23791 emcllem6 24727 gausslemma2dlem0f 25086 gausslemma2dlem0g 25087 pntpbnd1a 25274 ostth2lem4 25325 omsmon 30360 itg2gt0cn 33465 dalem-cly 34957 dalem10 34959 fourierdlem103 40426 fourierdlem104 40427 |
Copyright terms: Public domain | W3C validator |