| Step | Hyp | Ref
| Expression |
| 1 | | ovolun.g1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ)) |
| 2 | | reex 10027 |
. . . . . . . . . . . . 13
⊢ ℝ
∈ V |
| 3 | 2, 2 | xpex 6962 |
. . . . . . . . . . . 12
⊢ (ℝ
× ℝ) ∈ V |
| 4 | 3 | inex2 4800 |
. . . . . . . . . . 11
⊢ ( ≤
∩ (ℝ × ℝ)) ∈ V |
| 5 | | nnex 11026 |
. . . . . . . . . . 11
⊢ ℕ
∈ V |
| 6 | 4, 5 | elmap 7886 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ↔ 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 7 | 1, 6 | sylib 208 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 8 | 7 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 9 | 8 | ffvelrnda 6359 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑛 / 2) ∈ ℕ) → (𝐺‘(𝑛 / 2)) ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
| 10 | | nneo 11461 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → ((𝑛 / 2) ∈ ℕ ↔
¬ ((𝑛 + 1) / 2) ∈
ℕ)) |
| 11 | 10 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑛 / 2) ∈ ℕ ↔ ¬ ((𝑛 + 1) / 2) ∈
ℕ)) |
| 12 | 11 | con2bid 344 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝑛 + 1) / 2) ∈ ℕ ↔ ¬ (𝑛 / 2) ∈
ℕ)) |
| 13 | 12 | biimpar 502 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ (𝑛 / 2) ∈ ℕ) →
((𝑛 + 1) / 2) ∈
ℕ) |
| 14 | | ovolun.f1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ)) |
| 15 | 4, 5 | elmap 7886 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ↔ 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 16 | 14, 15 | sylib 208 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 17 | 16 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 18 | 17 | ffvelrnda 6359 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ((𝑛 + 1) / 2) ∈ ℕ) → (𝐹‘((𝑛 + 1) / 2)) ∈ ( ≤ ∩ (ℝ
× ℝ))) |
| 19 | 13, 18 | syldan 487 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ (𝑛 / 2) ∈ ℕ) →
(𝐹‘((𝑛 + 1) / 2)) ∈ ( ≤ ∩
(ℝ × ℝ))) |
| 20 | 9, 19 | ifclda 4120 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) ∈ ( ≤ ∩ (ℝ
× ℝ))) |
| 21 | | ovolun.h |
. . . . . 6
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2)))) |
| 22 | 20, 21 | fmptd 6385 |
. . . . 5
⊢ (𝜑 → 𝐻:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 23 | | eqid 2622 |
. . . . . 6
⊢ ((abs
∘ − ) ∘ 𝐻) = ((abs ∘ − ) ∘ 𝐻) |
| 24 | | ovolun.u |
. . . . . 6
⊢ 𝑈 = seq1( + , ((abs ∘
− ) ∘ 𝐻)) |
| 25 | 23, 24 | ovolsf 23241 |
. . . . 5
⊢ (𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑈:ℕ⟶(0[,)+∞)) |
| 26 | 22, 25 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑈:ℕ⟶(0[,)+∞)) |
| 27 | | rge0ssre 12280 |
. . . 4
⊢
(0[,)+∞) ⊆ ℝ |
| 28 | | fss 6056 |
. . . 4
⊢ ((𝑈:ℕ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ ℝ) → 𝑈:ℕ⟶ℝ) |
| 29 | 26, 27, 28 | sylancl 694 |
. . 3
⊢ (𝜑 → 𝑈:ℕ⟶ℝ) |
| 30 | 29 | ffvelrnda 6359 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘𝑘) ∈ ℝ) |
| 31 | | 2nn 11185 |
. . . 4
⊢ 2 ∈
ℕ |
| 32 | | peano2nn 11032 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
| 33 | 32 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ) |
| 34 | 33 | nnred 11035 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ) |
| 35 | 34 | rehalfcld 11279 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) / 2) ∈ ℝ) |
| 36 | 35 | flcld 12599 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(⌊‘((𝑘 + 1) /
2)) ∈ ℤ) |
| 37 | | ax-1cn 9994 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
| 38 | 37 | 2timesi 11147 |
. . . . . . . 8
⊢ (2
· 1) = (1 + 1) |
| 39 | | nnge1 11046 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 1 ≤
𝑘) |
| 40 | 39 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑘) |
| 41 | | nnre 11027 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
| 42 | 41 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ) |
| 43 | | 1re 10039 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ |
| 44 | | leadd1 10496 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ ∧ 𝑘
∈ ℝ ∧ 1 ∈ ℝ) → (1 ≤ 𝑘 ↔ (1 + 1) ≤ (𝑘 + 1))) |
| 45 | 43, 43, 44 | mp3an13 1415 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℝ → (1 ≤
𝑘 ↔ (1 + 1) ≤
(𝑘 + 1))) |
| 46 | 42, 45 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 ≤ 𝑘 ↔ (1 + 1) ≤ (𝑘 + 1))) |
| 47 | 40, 46 | mpbid 222 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 + 1) ≤ (𝑘 + 1)) |
| 48 | 38, 47 | syl5eqbr 4688 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 1) ≤
(𝑘 + 1)) |
| 49 | | 2re 11090 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 50 | | 2pos 11112 |
. . . . . . . . . 10
⊢ 0 <
2 |
| 51 | 49, 50 | pm3.2i 471 |
. . . . . . . . 9
⊢ (2 ∈
ℝ ∧ 0 < 2) |
| 52 | | lemuldiv2 10904 |
. . . . . . . . 9
⊢ ((1
∈ ℝ ∧ (𝑘 +
1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 ·
1) ≤ (𝑘 + 1) ↔ 1
≤ ((𝑘 + 1) /
2))) |
| 53 | 43, 51, 52 | mp3an13 1415 |
. . . . . . . 8
⊢ ((𝑘 + 1) ∈ ℝ → ((2
· 1) ≤ (𝑘 + 1)
↔ 1 ≤ ((𝑘 + 1) /
2))) |
| 54 | 34, 53 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · 1) ≤
(𝑘 + 1) ↔ 1 ≤
((𝑘 + 1) /
2))) |
| 55 | 48, 54 | mpbid 222 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 1 ≤ ((𝑘 + 1) / 2)) |
| 56 | | 1z 11407 |
. . . . . . 7
⊢ 1 ∈
ℤ |
| 57 | | flge 12606 |
. . . . . . 7
⊢ ((((𝑘 + 1) / 2) ∈ ℝ ∧
1 ∈ ℤ) → (1 ≤ ((𝑘 + 1) / 2) ↔ 1 ≤
(⌊‘((𝑘 + 1) /
2)))) |
| 58 | 35, 56, 57 | sylancl 694 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 ≤ ((𝑘 + 1) / 2) ↔ 1 ≤
(⌊‘((𝑘 + 1) /
2)))) |
| 59 | 55, 58 | mpbid 222 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 1 ≤
(⌊‘((𝑘 + 1) /
2))) |
| 60 | | elnnz1 11403 |
. . . . 5
⊢
((⌊‘((𝑘
+ 1) / 2)) ∈ ℕ ↔ ((⌊‘((𝑘 + 1) / 2)) ∈ ℤ ∧ 1 ≤
(⌊‘((𝑘 + 1) /
2)))) |
| 61 | 36, 59, 60 | sylanbrc 698 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(⌊‘((𝑘 + 1) /
2)) ∈ ℕ) |
| 62 | | nnmulcl 11043 |
. . . 4
⊢ ((2
∈ ℕ ∧ (⌊‘((𝑘 + 1) / 2)) ∈ ℕ) → (2
· (⌊‘((𝑘
+ 1) / 2))) ∈ ℕ) |
| 63 | 31, 61, 62 | sylancr 695 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 ·
(⌊‘((𝑘 + 1) /
2))) ∈ ℕ) |
| 64 | 29 | ffvelrnda 6359 |
. . 3
⊢ ((𝜑 ∧ (2 ·
(⌊‘((𝑘 + 1) /
2))) ∈ ℕ) → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) ∈
ℝ) |
| 65 | 63, 64 | syldan 487 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) ∈
ℝ) |
| 66 | | ovolun.a |
. . . . . 6
⊢ (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈
ℝ)) |
| 67 | 66 | simprd 479 |
. . . . 5
⊢ (𝜑 → (vol*‘𝐴) ∈
ℝ) |
| 68 | | ovolun.b |
. . . . . 6
⊢ (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ)) |
| 69 | 68 | simprd 479 |
. . . . 5
⊢ (𝜑 → (vol*‘𝐵) ∈
ℝ) |
| 70 | 67, 69 | readdcld 10069 |
. . . 4
⊢ (𝜑 → ((vol*‘𝐴) + (vol*‘𝐵)) ∈
ℝ) |
| 71 | | ovolun.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
| 72 | 71 | rpred 11872 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 73 | 70, 72 | readdcld 10069 |
. . 3
⊢ (𝜑 → (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ∈ ℝ) |
| 74 | 73 | adantr 481 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ∈ ℝ) |
| 75 | | simpr 477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
| 76 | | nnuz 11723 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
| 77 | 75, 76 | syl6eleq 2711 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
(ℤ≥‘1)) |
| 78 | | nnz 11399 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
| 79 | 78 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ) |
| 80 | | flhalf 12631 |
. . . . . 6
⊢ (𝑘 ∈ ℤ → 𝑘 ≤ (2 ·
(⌊‘((𝑘 + 1) /
2)))) |
| 81 | 79, 80 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (2 · (⌊‘((𝑘 + 1) / 2)))) |
| 82 | | nnz 11399 |
. . . . . . 7
⊢ ((2
· (⌊‘((𝑘
+ 1) / 2))) ∈ ℕ → (2 · (⌊‘((𝑘 + 1) / 2))) ∈
ℤ) |
| 83 | | eluz 11701 |
. . . . . . 7
⊢ ((𝑘 ∈ ℤ ∧ (2
· (⌊‘((𝑘
+ 1) / 2))) ∈ ℤ) → ((2 · (⌊‘((𝑘 + 1) / 2))) ∈
(ℤ≥‘𝑘) ↔ 𝑘 ≤ (2 · (⌊‘((𝑘 + 1) / 2))))) |
| 84 | 78, 82, 83 | syl2an 494 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ∧ (2
· (⌊‘((𝑘
+ 1) / 2))) ∈ ℕ) → ((2 · (⌊‘((𝑘 + 1) / 2))) ∈
(ℤ≥‘𝑘) ↔ 𝑘 ≤ (2 · (⌊‘((𝑘 + 1) / 2))))) |
| 85 | 75, 63, 84 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 ·
(⌊‘((𝑘 + 1) /
2))) ∈ (ℤ≥‘𝑘) ↔ 𝑘 ≤ (2 · (⌊‘((𝑘 + 1) / 2))))) |
| 86 | 81, 85 | mpbird 247 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 ·
(⌊‘((𝑘 + 1) /
2))) ∈ (ℤ≥‘𝑘)) |
| 87 | | elfznn 12370 |
. . . . 5
⊢ (𝑗 ∈ (1...(2 ·
(⌊‘((𝑘 + 1) /
2)))) → 𝑗 ∈
ℕ) |
| 88 | 23 | ovolfsf 23240 |
. . . . . . . . . 10
⊢ (𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐻):ℕ⟶(0[,)+∞)) |
| 89 | 22, 88 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((abs ∘ − )
∘ 𝐻):ℕ⟶(0[,)+∞)) |
| 90 | 89 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs ∘ −
) ∘ 𝐻):ℕ⟶(0[,)+∞)) |
| 91 | 90 | ffvelrnda 6359 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘𝑗) ∈ (0[,)+∞)) |
| 92 | | elrege0 12278 |
. . . . . . 7
⊢ ((((abs
∘ − ) ∘ 𝐻)‘𝑗) ∈ (0[,)+∞) ↔ ((((abs
∘ − ) ∘ 𝐻)‘𝑗) ∈ ℝ ∧ 0 ≤ (((abs ∘
− ) ∘ 𝐻)‘𝑗))) |
| 93 | 91, 92 | sylib 208 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → ((((abs ∘
− ) ∘ 𝐻)‘𝑗) ∈ ℝ ∧ 0 ≤ (((abs ∘
− ) ∘ 𝐻)‘𝑗))) |
| 94 | 93 | simpld 475 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘𝑗) ∈ ℝ) |
| 95 | 87, 94 | sylan2 491 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...(2 ·
(⌊‘((𝑘 + 1) /
2))))) → (((abs ∘ − ) ∘ 𝐻)‘𝑗) ∈ ℝ) |
| 96 | | elfzuz 12338 |
. . . . . 6
⊢ (𝑗 ∈ ((𝑘 + 1)...(2 · (⌊‘((𝑘 + 1) / 2)))) → 𝑗 ∈
(ℤ≥‘(𝑘 + 1))) |
| 97 | | eluznn 11758 |
. . . . . 6
⊢ (((𝑘 + 1) ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(𝑘 + 1))) → 𝑗 ∈ ℕ) |
| 98 | 33, 96, 97 | syl2an 494 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ((𝑘 + 1)...(2 · (⌊‘((𝑘 + 1) / 2))))) → 𝑗 ∈
ℕ) |
| 99 | 93 | simprd 479 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (((abs ∘
− ) ∘ 𝐻)‘𝑗)) |
| 100 | 98, 99 | syldan 487 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ((𝑘 + 1)...(2 · (⌊‘((𝑘 + 1) / 2))))) → 0 ≤
(((abs ∘ − ) ∘ 𝐻)‘𝑗)) |
| 101 | 77, 86, 95, 100 | sermono 12833 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘𝑘) ≤ (seq1( + , ((abs ∘ − )
∘ 𝐻))‘(2
· (⌊‘((𝑘
+ 1) / 2))))) |
| 102 | 24 | fveq1i 6192 |
. . 3
⊢ (𝑈‘𝑘) = (seq1( + , ((abs ∘ − )
∘ 𝐻))‘𝑘) |
| 103 | 24 | fveq1i 6192 |
. . 3
⊢ (𝑈‘(2 ·
(⌊‘((𝑘 + 1) /
2)))) = (seq1( + , ((abs ∘ − ) ∘ 𝐻))‘(2 · (⌊‘((𝑘 + 1) / 2)))) |
| 104 | 101, 102,
103 | 3brtr4g 4687 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘𝑘) ≤ (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2))))) |
| 105 | | eqid 2622 |
. . . . . . . . . 10
⊢ ((abs
∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) |
| 106 | | ovolun.s |
. . . . . . . . . 10
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
| 107 | 105, 106 | ovolsf 23241 |
. . . . . . . . 9
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
| 108 | 16, 107 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
| 109 | | frn 6053 |
. . . . . . . 8
⊢ (𝑆:ℕ⟶(0[,)+∞)
→ ran 𝑆 ⊆
(0[,)+∞)) |
| 110 | 108, 109 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
| 111 | 110, 27 | syl6ss 3615 |
. . . . . 6
⊢ (𝜑 → ran 𝑆 ⊆ ℝ) |
| 112 | 111 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran 𝑆 ⊆ ℝ) |
| 113 | | ffn 6045 |
. . . . . . . 8
⊢ (𝑆:ℕ⟶(0[,)+∞)
→ 𝑆 Fn
ℕ) |
| 114 | 108, 113 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆 Fn ℕ) |
| 115 | 114 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑆 Fn ℕ) |
| 116 | | fnfvelrn 6356 |
. . . . . 6
⊢ ((𝑆 Fn ℕ ∧
(⌊‘((𝑘 + 1) /
2)) ∈ ℕ) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑆) |
| 117 | 115, 61, 116 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑆) |
| 118 | 112, 117 | sseldd 3604 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ∈ ℝ) |
| 119 | | eqid 2622 |
. . . . . . . . . 10
⊢ ((abs
∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺) |
| 120 | | ovolun.t |
. . . . . . . . . 10
⊢ 𝑇 = seq1( + , ((abs ∘
− ) ∘ 𝐺)) |
| 121 | 119, 120 | ovolsf 23241 |
. . . . . . . . 9
⊢ (𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞)) |
| 122 | 7, 121 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑇:ℕ⟶(0[,)+∞)) |
| 123 | | frn 6053 |
. . . . . . . 8
⊢ (𝑇:ℕ⟶(0[,)+∞)
→ ran 𝑇 ⊆
(0[,)+∞)) |
| 124 | 122, 123 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ran 𝑇 ⊆ (0[,)+∞)) |
| 125 | 124, 27 | syl6ss 3615 |
. . . . . 6
⊢ (𝜑 → ran 𝑇 ⊆ ℝ) |
| 126 | 125 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran 𝑇 ⊆ ℝ) |
| 127 | | ffn 6045 |
. . . . . . . 8
⊢ (𝑇:ℕ⟶(0[,)+∞)
→ 𝑇 Fn
ℕ) |
| 128 | 122, 127 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑇 Fn ℕ) |
| 129 | 128 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑇 Fn ℕ) |
| 130 | | fnfvelrn 6356 |
. . . . . 6
⊢ ((𝑇 Fn ℕ ∧
(⌊‘((𝑘 + 1) /
2)) ∈ ℕ) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑇) |
| 131 | 129, 61, 130 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑇) |
| 132 | 126, 131 | sseldd 3604 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ∈ ℝ) |
| 133 | 72 | rehalfcld 11279 |
. . . . . 6
⊢ (𝜑 → (𝐶 / 2) ∈ ℝ) |
| 134 | 67, 133 | readdcld 10069 |
. . . . 5
⊢ (𝜑 → ((vol*‘𝐴) + (𝐶 / 2)) ∈ ℝ) |
| 135 | 134 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((vol*‘𝐴) + (𝐶 / 2)) ∈ ℝ) |
| 136 | 69, 133 | readdcld 10069 |
. . . . 5
⊢ (𝜑 → ((vol*‘𝐵) + (𝐶 / 2)) ∈ ℝ) |
| 137 | 136 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((vol*‘𝐵) + (𝐶 / 2)) ∈ ℝ) |
| 138 | | ressxr 10083 |
. . . . . . . . 9
⊢ ℝ
⊆ ℝ* |
| 139 | 111, 138 | syl6ss 3615 |
. . . . . . . 8
⊢ (𝜑 → ran 𝑆 ⊆
ℝ*) |
| 140 | | supxrcl 12145 |
. . . . . . . 8
⊢ (ran
𝑆 ⊆
ℝ* → sup(ran 𝑆, ℝ*, < ) ∈
ℝ*) |
| 141 | 139, 140 | syl 17 |
. . . . . . 7
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈
ℝ*) |
| 142 | | 1nn 11031 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ |
| 143 | | fdm 6051 |
. . . . . . . . . . . 12
⊢ (𝑆:ℕ⟶(0[,)+∞)
→ dom 𝑆 =
ℕ) |
| 144 | 108, 143 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝑆 = ℕ) |
| 145 | 142, 144 | syl5eleqr 2708 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈ dom 𝑆) |
| 146 | | ne0i 3921 |
. . . . . . . . . 10
⊢ (1 ∈
dom 𝑆 → dom 𝑆 ≠ ∅) |
| 147 | 145, 146 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑆 ≠ ∅) |
| 148 | | dm0rn0 5342 |
. . . . . . . . . 10
⊢ (dom
𝑆 = ∅ ↔ ran
𝑆 =
∅) |
| 149 | 148 | necon3bii 2846 |
. . . . . . . . 9
⊢ (dom
𝑆 ≠ ∅ ↔ ran
𝑆 ≠
∅) |
| 150 | 147, 149 | sylib 208 |
. . . . . . . 8
⊢ (𝜑 → ran 𝑆 ≠ ∅) |
| 151 | | supxrgtmnf 12159 |
. . . . . . . 8
⊢ ((ran
𝑆 ⊆ ℝ ∧ ran
𝑆 ≠ ∅) →
-∞ < sup(ran 𝑆,
ℝ*, < )) |
| 152 | 111, 150,
151 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → -∞ < sup(ran
𝑆, ℝ*,
< )) |
| 153 | | ovolun.f3 |
. . . . . . 7
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) |
| 154 | | xrre 12000 |
. . . . . . 7
⊢
(((sup(ran 𝑆,
ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐴) + (𝐶 / 2)) ∈ ℝ) ∧ (-∞ <
sup(ran 𝑆,
ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2)))) → sup(ran 𝑆, ℝ*, < )
∈ ℝ) |
| 155 | 141, 134,
152, 153, 154 | syl22anc 1327 |
. . . . . 6
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈
ℝ) |
| 156 | 155 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → sup(ran 𝑆, ℝ*, < )
∈ ℝ) |
| 157 | 139 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran 𝑆 ⊆
ℝ*) |
| 158 | | supxrub 12154 |
. . . . . 6
⊢ ((ran
𝑆 ⊆
ℝ* ∧ (𝑆‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑆) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 159 | 157, 117,
158 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 160 | 153 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → sup(ran 𝑆, ℝ*, < )
≤ ((vol*‘𝐴) +
(𝐶 / 2))) |
| 161 | 118, 156,
135, 159, 160 | letrd 10194 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ≤ ((vol*‘𝐴) + (𝐶 / 2))) |
| 162 | 125, 138 | syl6ss 3615 |
. . . . . . . 8
⊢ (𝜑 → ran 𝑇 ⊆
ℝ*) |
| 163 | | supxrcl 12145 |
. . . . . . . 8
⊢ (ran
𝑇 ⊆
ℝ* → sup(ran 𝑇, ℝ*, < ) ∈
ℝ*) |
| 164 | 162, 163 | syl 17 |
. . . . . . 7
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈
ℝ*) |
| 165 | | fdm 6051 |
. . . . . . . . . . . 12
⊢ (𝑇:ℕ⟶(0[,)+∞)
→ dom 𝑇 =
ℕ) |
| 166 | 122, 165 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝑇 = ℕ) |
| 167 | 142, 166 | syl5eleqr 2708 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈ dom 𝑇) |
| 168 | | ne0i 3921 |
. . . . . . . . . 10
⊢ (1 ∈
dom 𝑇 → dom 𝑇 ≠ ∅) |
| 169 | 167, 168 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑇 ≠ ∅) |
| 170 | | dm0rn0 5342 |
. . . . . . . . . 10
⊢ (dom
𝑇 = ∅ ↔ ran
𝑇 =
∅) |
| 171 | 170 | necon3bii 2846 |
. . . . . . . . 9
⊢ (dom
𝑇 ≠ ∅ ↔ ran
𝑇 ≠
∅) |
| 172 | 169, 171 | sylib 208 |
. . . . . . . 8
⊢ (𝜑 → ran 𝑇 ≠ ∅) |
| 173 | | supxrgtmnf 12159 |
. . . . . . . 8
⊢ ((ran
𝑇 ⊆ ℝ ∧ ran
𝑇 ≠ ∅) →
-∞ < sup(ran 𝑇,
ℝ*, < )) |
| 174 | 125, 172,
173 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → -∞ < sup(ran
𝑇, ℝ*,
< )) |
| 175 | | ovolun.g3 |
. . . . . . 7
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2))) |
| 176 | | xrre 12000 |
. . . . . . 7
⊢
(((sup(ran 𝑇,
ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐵) + (𝐶 / 2)) ∈ ℝ) ∧ (-∞ <
sup(ran 𝑇,
ℝ*, < ) ∧ sup(ran 𝑇, ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2)))) → sup(ran 𝑇, ℝ*, < )
∈ ℝ) |
| 177 | 164, 136,
174, 175, 176 | syl22anc 1327 |
. . . . . 6
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈
ℝ) |
| 178 | 177 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → sup(ran 𝑇, ℝ*, < )
∈ ℝ) |
| 179 | 162 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran 𝑇 ⊆
ℝ*) |
| 180 | | supxrub 12154 |
. . . . . 6
⊢ ((ran
𝑇 ⊆
ℝ* ∧ (𝑇‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑇) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ≤ sup(ran 𝑇, ℝ*, <
)) |
| 181 | 179, 131,
180 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ≤ sup(ran 𝑇, ℝ*, <
)) |
| 182 | 175 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → sup(ran 𝑇, ℝ*, < )
≤ ((vol*‘𝐵) +
(𝐶 / 2))) |
| 183 | 132, 178,
137, 181, 182 | letrd 10194 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ≤ ((vol*‘𝐵) + (𝐶 / 2))) |
| 184 | 118, 132,
135, 137, 161, 183 | le2addd 10646 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2)))) ≤ (((vol*‘𝐴) + (𝐶 / 2)) + ((vol*‘𝐵) + (𝐶 / 2)))) |
| 185 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑧 = 1 → (2 · 𝑧) = (2 ·
1)) |
| 186 | 185 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑧 = 1 → (𝑈‘(2 · 𝑧)) = (𝑈‘(2 · 1))) |
| 187 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑧 = 1 → (𝑆‘𝑧) = (𝑆‘1)) |
| 188 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑧 = 1 → (𝑇‘𝑧) = (𝑇‘1)) |
| 189 | 187, 188 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑧 = 1 → ((𝑆‘𝑧) + (𝑇‘𝑧)) = ((𝑆‘1) + (𝑇‘1))) |
| 190 | 186, 189 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑧 = 1 → ((𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧)) ↔ (𝑈‘(2 · 1)) = ((𝑆‘1) + (𝑇‘1)))) |
| 191 | 190 | imbi2d 330 |
. . . . . 6
⊢ (𝑧 = 1 → ((𝜑 → (𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧))) ↔ (𝜑 → (𝑈‘(2 · 1)) = ((𝑆‘1) + (𝑇‘1))))) |
| 192 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑧 = 𝑘 → (2 · 𝑧) = (2 · 𝑘)) |
| 193 | 192 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑧 = 𝑘 → (𝑈‘(2 · 𝑧)) = (𝑈‘(2 · 𝑘))) |
| 194 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑧 = 𝑘 → (𝑆‘𝑧) = (𝑆‘𝑘)) |
| 195 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑧 = 𝑘 → (𝑇‘𝑧) = (𝑇‘𝑘)) |
| 196 | 194, 195 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑧 = 𝑘 → ((𝑆‘𝑧) + (𝑇‘𝑧)) = ((𝑆‘𝑘) + (𝑇‘𝑘))) |
| 197 | 193, 196 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑧 = 𝑘 → ((𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧)) ↔ (𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘)))) |
| 198 | 197 | imbi2d 330 |
. . . . . 6
⊢ (𝑧 = 𝑘 → ((𝜑 → (𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧))) ↔ (𝜑 → (𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘))))) |
| 199 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑧 = (𝑘 + 1) → (2 · 𝑧) = (2 · (𝑘 + 1))) |
| 200 | 199 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑧 = (𝑘 + 1) → (𝑈‘(2 · 𝑧)) = (𝑈‘(2 · (𝑘 + 1)))) |
| 201 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑧 = (𝑘 + 1) → (𝑆‘𝑧) = (𝑆‘(𝑘 + 1))) |
| 202 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑧 = (𝑘 + 1) → (𝑇‘𝑧) = (𝑇‘(𝑘 + 1))) |
| 203 | 201, 202 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑧 = (𝑘 + 1) → ((𝑆‘𝑧) + (𝑇‘𝑧)) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1)))) |
| 204 | 200, 203 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑧 = (𝑘 + 1) → ((𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧)) ↔ (𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1))))) |
| 205 | 204 | imbi2d 330 |
. . . . . 6
⊢ (𝑧 = (𝑘 + 1) → ((𝜑 → (𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧))) ↔ (𝜑 → (𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1)))))) |
| 206 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → (2 ·
𝑧) = (2 ·
(⌊‘((𝑘 + 1) /
2)))) |
| 207 | 206 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → (𝑈‘(2 · 𝑧)) = (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2))))) |
| 208 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → (𝑆‘𝑧) = (𝑆‘(⌊‘((𝑘 + 1) / 2)))) |
| 209 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → (𝑇‘𝑧) = (𝑇‘(⌊‘((𝑘 + 1) / 2)))) |
| 210 | 208, 209 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → ((𝑆‘𝑧) + (𝑇‘𝑧)) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2))))) |
| 211 | 207, 210 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → ((𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧)) ↔ (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2)))))) |
| 212 | 211 | imbi2d 330 |
. . . . . 6
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → ((𝜑 → (𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧))) ↔ (𝜑 → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) /
2))))))) |
| 213 | 24 | fveq1i 6192 |
. . . . . . . 8
⊢ (𝑈‘(2 · 1)) = (seq1(
+ , ((abs ∘ − ) ∘ 𝐻))‘(2 · 1)) |
| 214 | 23 | ovolfsval 23239 |
. . . . . . . . . . . 12
⊢ ((𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 1 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘1) = ((2nd ‘(𝐻‘1)) −
(1st ‘(𝐻‘1)))) |
| 215 | 22, 142, 214 | sylancl 694 |
. . . . . . . . . . 11
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐻)‘1) =
((2nd ‘(𝐻‘1)) − (1st
‘(𝐻‘1)))) |
| 216 | | halfnz 11455 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬ (1
/ 2) ∈ ℤ |
| 217 | | nnz 11399 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 / 2) ∈ ℕ →
(𝑛 / 2) ∈
ℤ) |
| 218 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → (𝑛 / 2) = (1 / 2)) |
| 219 | 218 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 1 → ((𝑛 / 2) ∈ ℤ ↔ (1 / 2) ∈
ℤ)) |
| 220 | 217, 219 | syl5ib 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → ((𝑛 / 2) ∈ ℕ → (1 / 2) ∈
ℤ)) |
| 221 | 216, 220 | mtoi 190 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → ¬ (𝑛 / 2) ∈
ℕ) |
| 222 | 221 | iffalsed 4097 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 1 → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = (𝐹‘((𝑛 + 1) / 2))) |
| 223 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → (𝑛 + 1) = (1 + 1)) |
| 224 | | df-2 11079 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 = (1 +
1) |
| 225 | 223, 224 | syl6eqr 2674 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 1 → (𝑛 + 1) = 2) |
| 226 | 225 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → ((𝑛 + 1) / 2) = (2 / 2)) |
| 227 | | 2div2e1 11150 |
. . . . . . . . . . . . . . . . . 18
⊢ (2 / 2) =
1 |
| 228 | 226, 227 | syl6eq 2672 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → ((𝑛 + 1) / 2) = 1) |
| 229 | 228 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 1 → (𝐹‘((𝑛 + 1) / 2)) = (𝐹‘1)) |
| 230 | 222, 229 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 1 → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = (𝐹‘1)) |
| 231 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘1) ∈
V |
| 232 | 230, 21, 231 | fvmpt 6282 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℕ → (𝐻‘1)
= (𝐹‘1)) |
| 233 | 142, 232 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝐻‘1) = (𝐹‘1) |
| 234 | 233 | fveq2i 6194 |
. . . . . . . . . . . 12
⊢
(2nd ‘(𝐻‘1)) = (2nd ‘(𝐹‘1)) |
| 235 | 233 | fveq2i 6194 |
. . . . . . . . . . . 12
⊢
(1st ‘(𝐻‘1)) = (1st ‘(𝐹‘1)) |
| 236 | 234, 235 | oveq12i 6662 |
. . . . . . . . . . 11
⊢
((2nd ‘(𝐻‘1)) − (1st
‘(𝐻‘1))) =
((2nd ‘(𝐹‘1)) − (1st
‘(𝐹‘1))) |
| 237 | 215, 236 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐻)‘1) =
((2nd ‘(𝐹‘1)) − (1st
‘(𝐹‘1)))) |
| 238 | 56, 237 | seq1i 12815 |
. . . . . . . . 9
⊢ (𝜑 → (seq1( + , ((abs ∘
− ) ∘ 𝐻))‘1) = ((2nd ‘(𝐹‘1)) −
(1st ‘(𝐹‘1)))) |
| 239 | | 2t1e2 11176 |
. . . . . . . . . . 11
⊢ (2
· 1) = 2 |
| 240 | 239 | fveq2i 6194 |
. . . . . . . . . 10
⊢ (((abs
∘ − ) ∘ 𝐻)‘(2 · 1)) = (((abs ∘
− ) ∘ 𝐻)‘2) |
| 241 | 23 | ovolfsval 23239 |
. . . . . . . . . . . 12
⊢ ((𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 2 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘2) = ((2nd ‘(𝐻‘2)) −
(1st ‘(𝐻‘2)))) |
| 242 | 22, 31, 241 | sylancl 694 |
. . . . . . . . . . 11
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐻)‘2) =
((2nd ‘(𝐻‘2)) − (1st
‘(𝐻‘2)))) |
| 243 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 2 → (𝑛 / 2) = (2 / 2)) |
| 244 | 243, 227 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 2 → (𝑛 / 2) = 1) |
| 245 | 244, 142 | syl6eqel 2709 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 2 → (𝑛 / 2) ∈ ℕ) |
| 246 | 245 | iftrued 4094 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 2 → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = (𝐺‘(𝑛 / 2))) |
| 247 | 244 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 2 → (𝐺‘(𝑛 / 2)) = (𝐺‘1)) |
| 248 | 246, 247 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 2 → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = (𝐺‘1)) |
| 249 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢ (𝐺‘1) ∈
V |
| 250 | 248, 21, 249 | fvmpt 6282 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
ℕ → (𝐻‘2)
= (𝐺‘1)) |
| 251 | 31, 250 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝐻‘2) = (𝐺‘1) |
| 252 | 251 | fveq2i 6194 |
. . . . . . . . . . . 12
⊢
(2nd ‘(𝐻‘2)) = (2nd ‘(𝐺‘1)) |
| 253 | 251 | fveq2i 6194 |
. . . . . . . . . . . 12
⊢
(1st ‘(𝐻‘2)) = (1st ‘(𝐺‘1)) |
| 254 | 252, 253 | oveq12i 6662 |
. . . . . . . . . . 11
⊢
((2nd ‘(𝐻‘2)) − (1st
‘(𝐻‘2))) =
((2nd ‘(𝐺‘1)) − (1st
‘(𝐺‘1))) |
| 255 | 242, 254 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐻)‘2) =
((2nd ‘(𝐺‘1)) − (1st
‘(𝐺‘1)))) |
| 256 | 240, 255 | syl5eq 2668 |
. . . . . . . . 9
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐻)‘(2
· 1)) = ((2nd ‘(𝐺‘1)) − (1st
‘(𝐺‘1)))) |
| 257 | 76, 142, 38, 238, 256 | seqp1i 12817 |
. . . . . . . 8
⊢ (𝜑 → (seq1( + , ((abs ∘
− ) ∘ 𝐻))‘(2 · 1)) = (((2nd
‘(𝐹‘1)) −
(1st ‘(𝐹‘1))) + ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1))))) |
| 258 | 213, 257 | syl5eq 2668 |
. . . . . . 7
⊢ (𝜑 → (𝑈‘(2 · 1)) = (((2nd
‘(𝐹‘1)) −
(1st ‘(𝐹‘1))) + ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1))))) |
| 259 | 106 | fveq1i 6192 |
. . . . . . . . 9
⊢ (𝑆‘1) = (seq1( + , ((abs
∘ − ) ∘ 𝐹))‘1) |
| 260 | 105 | ovolfsval 23239 |
. . . . . . . . . . 11
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 1 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘1) = ((2nd ‘(𝐹‘1)) −
(1st ‘(𝐹‘1)))) |
| 261 | 16, 142, 260 | sylancl 694 |
. . . . . . . . . 10
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐹)‘1) =
((2nd ‘(𝐹‘1)) − (1st
‘(𝐹‘1)))) |
| 262 | 56, 261 | seq1i 12815 |
. . . . . . . . 9
⊢ (𝜑 → (seq1( + , ((abs ∘
− ) ∘ 𝐹))‘1) = ((2nd ‘(𝐹‘1)) −
(1st ‘(𝐹‘1)))) |
| 263 | 259, 262 | syl5eq 2668 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘1) = ((2nd ‘(𝐹‘1)) −
(1st ‘(𝐹‘1)))) |
| 264 | 120 | fveq1i 6192 |
. . . . . . . . 9
⊢ (𝑇‘1) = (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘1) |
| 265 | 119 | ovolfsval 23239 |
. . . . . . . . . . 11
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 1 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘1) = ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1)))) |
| 266 | 7, 142, 265 | sylancl 694 |
. . . . . . . . . 10
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐺)‘1) =
((2nd ‘(𝐺‘1)) − (1st
‘(𝐺‘1)))) |
| 267 | 56, 266 | seq1i 12815 |
. . . . . . . . 9
⊢ (𝜑 → (seq1( + , ((abs ∘
− ) ∘ 𝐺))‘1) = ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1)))) |
| 268 | 264, 267 | syl5eq 2668 |
. . . . . . . 8
⊢ (𝜑 → (𝑇‘1) = ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1)))) |
| 269 | 263, 268 | oveq12d 6668 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘1) + (𝑇‘1)) = (((2nd ‘(𝐹‘1)) −
(1st ‘(𝐹‘1))) + ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1))))) |
| 270 | 258, 269 | eqtr4d 2659 |
. . . . . 6
⊢ (𝜑 → (𝑈‘(2 · 1)) = ((𝑆‘1) + (𝑇‘1))) |
| 271 | | oveq1 6657 |
. . . . . . . . 9
⊢ ((𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘)) → ((𝑈‘(2 · 𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1)))) = (((𝑆‘𝑘) + (𝑇‘𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))))) |
| 272 | 38 | oveq2i 6661 |
. . . . . . . . . . . . 13
⊢ ((2
· 𝑘) + (2 ·
1)) = ((2 · 𝑘) + (1
+ 1)) |
| 273 | | 2cnd 11093 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 2 ∈
ℂ) |
| 274 | 42 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ) |
| 275 | | 1cnd 10056 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 1 ∈
ℂ) |
| 276 | 273, 274,
275 | adddid 10064 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · (𝑘 + 1)) = ((2 · 𝑘) + (2 ·
1))) |
| 277 | | nnmulcl 11043 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ) → (2 · 𝑘) ∈ ℕ) |
| 278 | 31, 277 | mpan 706 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) ∈
ℕ) |
| 279 | 278 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈
ℕ) |
| 280 | 279 | nncnd 11036 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈
ℂ) |
| 281 | 280, 275,
275 | addassd 10062 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) + 1) + 1) = ((2 · 𝑘) + (1 + 1))) |
| 282 | 272, 276,
281 | 3eqtr4a 2682 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · (𝑘 + 1)) = (((2 · 𝑘) + 1) + 1)) |
| 283 | 282 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · (𝑘 + 1))) = (𝑈‘(((2 · 𝑘) + 1) + 1))) |
| 284 | 24 | fveq1i 6192 |
. . . . . . . . . . . 12
⊢ (𝑈‘(((2 · 𝑘) + 1) + 1)) = (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘(((2 · 𝑘) + 1) + 1)) |
| 285 | 279 | peano2nnd 11037 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈
ℕ) |
| 286 | 285, 76 | syl6eleq 2711 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈
(ℤ≥‘1)) |
| 287 | | seqp1 12816 |
. . . . . . . . . . . . . 14
⊢ (((2
· 𝑘) + 1) ∈
(ℤ≥‘1) → (seq1( + , ((abs ∘ − )
∘ 𝐻))‘(((2
· 𝑘) + 1) + 1)) =
((seq1( + , ((abs ∘ − ) ∘ 𝐻))‘((2 · 𝑘) + 1)) + (((abs ∘ − ) ∘
𝐻)‘(((2 ·
𝑘) + 1) +
1)))) |
| 288 | 286, 287 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘(((2 · 𝑘) + 1) + 1)) = ((seq1( + , ((abs ∘
− ) ∘ 𝐻))‘((2 · 𝑘) + 1)) + (((abs ∘ − ) ∘
𝐻)‘(((2 ·
𝑘) + 1) +
1)))) |
| 289 | 279, 76 | syl6eleq 2711 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈
(ℤ≥‘1)) |
| 290 | | seqp1 12816 |
. . . . . . . . . . . . . . . 16
⊢ ((2
· 𝑘) ∈
(ℤ≥‘1) → (seq1( + , ((abs ∘ − )
∘ 𝐻))‘((2
· 𝑘) + 1)) = ((seq1(
+ , ((abs ∘ − ) ∘ 𝐻))‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐻)‘((2 · 𝑘) + 1)))) |
| 291 | 289, 290 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘((2 · 𝑘) + 1)) = ((seq1( + , ((abs ∘ − )
∘ 𝐻))‘(2
· 𝑘)) + (((abs
∘ − ) ∘ 𝐻)‘((2 · 𝑘) + 1)))) |
| 292 | 24 | fveq1i 6192 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈‘(2 · 𝑘)) = (seq1( + , ((abs ∘
− ) ∘ 𝐻))‘(2 · 𝑘)) |
| 293 | 292 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · 𝑘)) = (seq1( + , ((abs ∘ − )
∘ 𝐻))‘(2
· 𝑘))) |
| 294 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = ((2 · 𝑘) + 1) → (𝑛 / 2) = (((2 · 𝑘) + 1) / 2)) |
| 295 | 294 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = ((2 · 𝑘) + 1) → ((𝑛 / 2) ∈ ℕ ↔ (((2
· 𝑘) + 1) / 2)
∈ ℕ)) |
| 296 | 294 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = ((2 · 𝑘) + 1) → (𝐺‘(𝑛 / 2)) = (𝐺‘(((2 · 𝑘) + 1) / 2))) |
| 297 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = ((2 · 𝑘) + 1) → (𝑛 + 1) = (((2 · 𝑘) + 1) + 1)) |
| 298 | 297 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = ((2 · 𝑘) + 1) → ((𝑛 + 1) / 2) = ((((2 ·
𝑘) + 1) + 1) /
2)) |
| 299 | 298 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = ((2 · 𝑘) + 1) → (𝐹‘((𝑛 + 1) / 2)) = (𝐹‘((((2 · 𝑘) + 1) + 1) / 2))) |
| 300 | 295, 296,
299 | ifbieq12d 4113 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = ((2 · 𝑘) + 1) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = if((((2 · 𝑘) + 1) / 2) ∈ ℕ,
(𝐺‘(((2 ·
𝑘) + 1) / 2)), (𝐹‘((((2 · 𝑘) + 1) + 1) /
2)))) |
| 301 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐺‘(((2 · 𝑘) + 1) / 2)) ∈
V |
| 302 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹‘((((2 · 𝑘) + 1) + 1) / 2)) ∈
V |
| 303 | 301, 302 | ifex 4156 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ if((((2
· 𝑘) + 1) / 2)
∈ ℕ, (𝐺‘(((2 · 𝑘) + 1) / 2)), (𝐹‘((((2 · 𝑘) + 1) + 1) / 2))) ∈ V |
| 304 | 300, 21, 303 | fvmpt 6282 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((2
· 𝑘) + 1) ∈
ℕ → (𝐻‘((2
· 𝑘) + 1)) = if((((2
· 𝑘) + 1) / 2)
∈ ℕ, (𝐺‘(((2 · 𝑘) + 1) / 2)), (𝐹‘((((2 · 𝑘) + 1) + 1) / 2)))) |
| 305 | 285, 304 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘((2 · 𝑘) + 1)) = if((((2 · 𝑘) + 1) / 2) ∈ ℕ, (𝐺‘(((2 · 𝑘) + 1) / 2)), (𝐹‘((((2 · 𝑘) + 1) + 1) / 2)))) |
| 306 | | 2ne0 11113 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 2 ≠
0 |
| 307 | 306 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 2 ≠
0) |
| 308 | 274, 273,
307 | divcan3d 10806 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) / 2) = 𝑘) |
| 309 | 308, 75 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) / 2) ∈
ℕ) |
| 310 | | nneo 11461 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((2
· 𝑘) ∈ ℕ
→ (((2 · 𝑘) /
2) ∈ ℕ ↔ ¬ (((2 · 𝑘) + 1) / 2) ∈ ℕ)) |
| 311 | 279, 310 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) / 2) ∈ ℕ ↔
¬ (((2 · 𝑘) + 1)
/ 2) ∈ ℕ)) |
| 312 | 309, 311 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ¬ (((2 ·
𝑘) + 1) / 2) ∈
ℕ) |
| 313 | 312 | iffalsed 4097 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → if((((2 ·
𝑘) + 1) / 2) ∈
ℕ, (𝐺‘(((2
· 𝑘) + 1) / 2)),
(𝐹‘((((2 ·
𝑘) + 1) + 1) / 2))) =
(𝐹‘((((2 ·
𝑘) + 1) + 1) /
2))) |
| 314 | 282 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · (𝑘 + 1)) / 2) = ((((2 ·
𝑘) + 1) + 1) /
2)) |
| 315 | 33 | nncnd 11036 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ) |
| 316 | | 2cn 11091 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 2 ∈
ℂ |
| 317 | | divcan3 10711 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑘 + 1) ∈ ℂ ∧ 2
∈ ℂ ∧ 2 ≠ 0) → ((2 · (𝑘 + 1)) / 2) = (𝑘 + 1)) |
| 318 | 316, 306,
317 | mp3an23 1416 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 + 1) ∈ ℂ → ((2
· (𝑘 + 1)) / 2) =
(𝑘 + 1)) |
| 319 | 315, 318 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · (𝑘 + 1)) / 2) = (𝑘 + 1)) |
| 320 | 314, 319 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((2 · 𝑘) + 1) + 1) / 2) = (𝑘 + 1)) |
| 321 | 320 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘((((2 · 𝑘) + 1) + 1) / 2)) = (𝐹‘(𝑘 + 1))) |
| 322 | 305, 313,
321 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘((2 · 𝑘) + 1)) = (𝐹‘(𝑘 + 1))) |
| 323 | 322 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2nd
‘(𝐻‘((2
· 𝑘) + 1))) =
(2nd ‘(𝐹‘(𝑘 + 1)))) |
| 324 | 322 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1st
‘(𝐻‘((2
· 𝑘) + 1))) =
(1st ‘(𝐹‘(𝑘 + 1)))) |
| 325 | 323, 324 | oveq12d 6668 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2nd
‘(𝐻‘((2
· 𝑘) + 1))) −
(1st ‘(𝐻‘((2 · 𝑘) + 1)))) = ((2nd ‘(𝐹‘(𝑘 + 1))) − (1st ‘(𝐹‘(𝑘 + 1))))) |
| 326 | 22 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐻:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 327 | 23 | ovolfsval 23239 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ((2 · 𝑘) + 1) ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘((2 · 𝑘) + 1)) = ((2nd ‘(𝐻‘((2 · 𝑘) + 1))) − (1st
‘(𝐻‘((2
· 𝑘) +
1))))) |
| 328 | 326, 285,
327 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘((2 · 𝑘) + 1)) = ((2nd ‘(𝐻‘((2 · 𝑘) + 1))) − (1st
‘(𝐻‘((2
· 𝑘) +
1))))) |
| 329 | 105 | ovolfsval 23239 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ (𝑘 + 1) ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) = ((2nd ‘(𝐹‘(𝑘 + 1))) − (1st ‘(𝐹‘(𝑘 + 1))))) |
| 330 | 16, 32, 329 | syl2an 494 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) = ((2nd ‘(𝐹‘(𝑘 + 1))) − (1st ‘(𝐹‘(𝑘 + 1))))) |
| 331 | 325, 328,
330 | 3eqtr4rd 2667 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) = (((abs ∘ − ) ∘
𝐻)‘((2 · 𝑘) + 1))) |
| 332 | 293, 331 | oveq12d 6668 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑈‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) = ((seq1( + , ((abs ∘ − )
∘ 𝐻))‘(2
· 𝑘)) + (((abs
∘ − ) ∘ 𝐻)‘((2 · 𝑘) + 1)))) |
| 333 | 291, 332 | eqtr4d 2659 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘((2 · 𝑘) + 1)) = ((𝑈‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)))) |
| 334 | 282 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘(2 · (𝑘 + 1))) = (𝐻‘(((2 · 𝑘) + 1) + 1))) |
| 335 | 285 | peano2nnd 11037 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) + 1) + 1) ∈
ℕ) |
| 336 | 282, 335 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · (𝑘 + 1)) ∈
ℕ) |
| 337 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = (2 · (𝑘 + 1)) → (𝑛 / 2) = ((2 · (𝑘 + 1)) / 2)) |
| 338 | 337 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = (2 · (𝑘 + 1)) → ((𝑛 / 2) ∈ ℕ ↔ ((2
· (𝑘 + 1)) / 2)
∈ ℕ)) |
| 339 | 337 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = (2 · (𝑘 + 1)) → (𝐺‘(𝑛 / 2)) = (𝐺‘((2 · (𝑘 + 1)) / 2))) |
| 340 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = (2 · (𝑘 + 1)) → (𝑛 + 1) = ((2 · (𝑘 + 1)) + 1)) |
| 341 | 340 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = (2 · (𝑘 + 1)) → ((𝑛 + 1) / 2) = (((2 ·
(𝑘 + 1)) + 1) /
2)) |
| 342 | 341 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = (2 · (𝑘 + 1)) → (𝐹‘((𝑛 + 1) / 2)) = (𝐹‘(((2 · (𝑘 + 1)) + 1) / 2))) |
| 343 | 338, 339,
342 | ifbieq12d 4113 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = (2 · (𝑘 + 1)) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = if(((2 · (𝑘 + 1)) / 2) ∈ ℕ,
(𝐺‘((2 ·
(𝑘 + 1)) / 2)), (𝐹‘(((2 · (𝑘 + 1)) + 1) /
2)))) |
| 344 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐺‘((2 · (𝑘 + 1)) / 2)) ∈
V |
| 345 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹‘(((2 · (𝑘 + 1)) + 1) / 2)) ∈
V |
| 346 | 344, 345 | ifex 4156 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ if(((2
· (𝑘 + 1)) / 2)
∈ ℕ, (𝐺‘((2 · (𝑘 + 1)) / 2)), (𝐹‘(((2 · (𝑘 + 1)) + 1) / 2))) ∈ V |
| 347 | 343, 21, 346 | fvmpt 6282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((2
· (𝑘 + 1)) ∈
ℕ → (𝐻‘(2
· (𝑘 + 1))) = if(((2
· (𝑘 + 1)) / 2)
∈ ℕ, (𝐺‘((2 · (𝑘 + 1)) / 2)), (𝐹‘(((2 · (𝑘 + 1)) + 1) / 2)))) |
| 348 | 336, 347 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘(2 · (𝑘 + 1))) = if(((2 · (𝑘 + 1)) / 2) ∈ ℕ, (𝐺‘((2 · (𝑘 + 1)) / 2)), (𝐹‘(((2 · (𝑘 + 1)) + 1) / 2)))) |
| 349 | 319, 33 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · (𝑘 + 1)) / 2) ∈
ℕ) |
| 350 | 349 | iftrued 4094 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → if(((2 ·
(𝑘 + 1)) / 2) ∈
ℕ, (𝐺‘((2
· (𝑘 + 1)) / 2)),
(𝐹‘(((2 ·
(𝑘 + 1)) + 1) / 2))) =
(𝐺‘((2 ·
(𝑘 + 1)) /
2))) |
| 351 | 319 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘((2 · (𝑘 + 1)) / 2)) = (𝐺‘(𝑘 + 1))) |
| 352 | 348, 350,
351 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘(2 · (𝑘 + 1))) = (𝐺‘(𝑘 + 1))) |
| 353 | 334, 352 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘(((2 · 𝑘) + 1) + 1)) = (𝐺‘(𝑘 + 1))) |
| 354 | 353 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2nd
‘(𝐻‘(((2
· 𝑘) + 1) + 1))) =
(2nd ‘(𝐺‘(𝑘 + 1)))) |
| 355 | 353 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1st
‘(𝐻‘(((2
· 𝑘) + 1) + 1))) =
(1st ‘(𝐺‘(𝑘 + 1)))) |
| 356 | 354, 355 | oveq12d 6668 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2nd
‘(𝐻‘(((2
· 𝑘) + 1) + 1)))
− (1st ‘(𝐻‘(((2 · 𝑘) + 1) + 1)))) = ((2nd
‘(𝐺‘(𝑘 + 1))) − (1st
‘(𝐺‘(𝑘 + 1))))) |
| 357 | 23 | ovolfsval 23239 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ (((2 · 𝑘) + 1) + 1) ∈ ℕ) → (((abs
∘ − ) ∘ 𝐻)‘(((2 · 𝑘) + 1) + 1)) = ((2nd ‘(𝐻‘(((2 · 𝑘) + 1) + 1))) −
(1st ‘(𝐻‘(((2 · 𝑘) + 1) + 1))))) |
| 358 | 326, 335,
357 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘(((2 · 𝑘) + 1) + 1)) = ((2nd ‘(𝐻‘(((2 · 𝑘) + 1) + 1))) −
(1st ‘(𝐻‘(((2 · 𝑘) + 1) + 1))))) |
| 359 | 119 | ovolfsval 23239 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ (𝑘 + 1) ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘(𝑘 + 1)) = ((2nd ‘(𝐺‘(𝑘 + 1))) − (1st ‘(𝐺‘(𝑘 + 1))))) |
| 360 | 7, 32, 359 | syl2an 494 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘(𝑘 + 1)) = ((2nd ‘(𝐺‘(𝑘 + 1))) − (1st ‘(𝐺‘(𝑘 + 1))))) |
| 361 | 356, 358,
360 | 3eqtr4d 2666 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘(((2 · 𝑘) + 1) + 1)) = (((abs ∘ − )
∘ 𝐺)‘(𝑘 + 1))) |
| 362 | 333, 361 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((seq1( + , ((abs
∘ − ) ∘ 𝐻))‘((2 · 𝑘) + 1)) + (((abs ∘ − ) ∘
𝐻)‘(((2 ·
𝑘) + 1) + 1))) = (((𝑈‘(2 · 𝑘)) + (((abs ∘ − )
∘ 𝐹)‘(𝑘 + 1))) + (((abs ∘ −
) ∘ 𝐺)‘(𝑘 + 1)))) |
| 363 | 288, 362 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘(((2 · 𝑘) + 1) + 1)) = (((𝑈‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1)))) |
| 364 | 284, 363 | syl5eq 2668 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(((2 · 𝑘) + 1) + 1)) = (((𝑈‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1)))) |
| 365 | | ffvelrn 6357 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈:ℕ⟶(0[,)+∞)
∧ (2 · 𝑘) ∈
ℕ) → (𝑈‘(2
· 𝑘)) ∈
(0[,)+∞)) |
| 366 | 26, 278, 365 | syl2an 494 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · 𝑘)) ∈ (0[,)+∞)) |
| 367 | 27, 366 | sseldi 3601 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · 𝑘)) ∈ ℝ) |
| 368 | 367 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · 𝑘)) ∈ ℂ) |
| 369 | 105 | ovolfsf 23240 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞)) |
| 370 | 16, 369 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((abs ∘ − )
∘ 𝐹):ℕ⟶(0[,)+∞)) |
| 371 | | ffvelrn 6357 |
. . . . . . . . . . . . . . 15
⊢ ((((abs
∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞) ∧ (𝑘 + 1) ∈ ℕ) →
(((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) ∈
(0[,)+∞)) |
| 372 | 370, 32, 371 | syl2an 494 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) ∈
(0[,)+∞)) |
| 373 | 27, 372 | sseldi 3601 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) ∈ ℝ) |
| 374 | 373 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) ∈ ℂ) |
| 375 | 119 | ovolfsf 23240 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞)) |
| 376 | 7, 375 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((abs ∘ − )
∘ 𝐺):ℕ⟶(0[,)+∞)) |
| 377 | | ffvelrn 6357 |
. . . . . . . . . . . . . . 15
⊢ ((((abs
∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞) ∧ (𝑘 + 1) ∈ ℕ) →
(((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1)) ∈
(0[,)+∞)) |
| 378 | 376, 32, 377 | syl2an 494 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘(𝑘 + 1)) ∈
(0[,)+∞)) |
| 379 | 27, 378 | sseldi 3601 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘(𝑘 + 1)) ∈ ℝ) |
| 380 | 379 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘(𝑘 + 1)) ∈ ℂ) |
| 381 | 368, 374,
380 | addassd 10062 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝑈‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))) = ((𝑈‘(2 · 𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))))) |
| 382 | 283, 364,
381 | 3eqtrd 2660 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · (𝑘 + 1))) = ((𝑈‘(2 · 𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))))) |
| 383 | | seqp1 12816 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈
(ℤ≥‘1) → (seq1( + , ((abs ∘ − )
∘ 𝐹))‘(𝑘 + 1)) = ((seq1( + , ((abs
∘ − ) ∘ 𝐹))‘𝑘) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)))) |
| 384 | 77, 383 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐹))‘(𝑘 + 1)) = ((seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑘) + (((abs ∘ − )
∘ 𝐹)‘(𝑘 + 1)))) |
| 385 | 106 | fveq1i 6192 |
. . . . . . . . . . . . 13
⊢ (𝑆‘(𝑘 + 1)) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘(𝑘 + 1)) |
| 386 | 106 | fveq1i 6192 |
. . . . . . . . . . . . . 14
⊢ (𝑆‘𝑘) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑘) |
| 387 | 386 | oveq1i 6660 |
. . . . . . . . . . . . 13
⊢ ((𝑆‘𝑘) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) = ((seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑘) + (((abs ∘ − )
∘ 𝐹)‘(𝑘 + 1))) |
| 388 | 384, 385,
387 | 3eqtr4g 2681 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(𝑘 + 1)) = ((𝑆‘𝑘) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)))) |
| 389 | | seqp1 12816 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈
(ℤ≥‘1) → (seq1( + , ((abs ∘ − )
∘ 𝐺))‘(𝑘 + 1)) = ((seq1( + , ((abs
∘ − ) ∘ 𝐺))‘𝑘) + (((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1)))) |
| 390 | 77, 389 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘(𝑘 + 1)) = ((seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘) + (((abs ∘ − )
∘ 𝐺)‘(𝑘 + 1)))) |
| 391 | 120 | fveq1i 6192 |
. . . . . . . . . . . . 13
⊢ (𝑇‘(𝑘 + 1)) = (seq1( + , ((abs ∘ − )
∘ 𝐺))‘(𝑘 + 1)) |
| 392 | 120 | fveq1i 6192 |
. . . . . . . . . . . . . 14
⊢ (𝑇‘𝑘) = (seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘) |
| 393 | 392 | oveq1i 6660 |
. . . . . . . . . . . . 13
⊢ ((𝑇‘𝑘) + (((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1))) = ((seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘) + (((abs ∘ − )
∘ 𝐺)‘(𝑘 + 1))) |
| 394 | 390, 391,
393 | 3eqtr4g 2681 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘(𝑘 + 1)) = ((𝑇‘𝑘) + (((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1)))) |
| 395 | 388, 394 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1))) = (((𝑆‘𝑘) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) + ((𝑇‘𝑘) + (((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1))))) |
| 396 | 108 | ffvelrnda 6359 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ (0[,)+∞)) |
| 397 | 27, 396 | sseldi 3601 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ ℝ) |
| 398 | 397 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ ℂ) |
| 399 | 122 | ffvelrnda 6359 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘𝑘) ∈ (0[,)+∞)) |
| 400 | 27, 399 | sseldi 3601 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘𝑘) ∈ ℝ) |
| 401 | 400 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘𝑘) ∈ ℂ) |
| 402 | 398, 374,
401, 380 | add4d 10264 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝑆‘𝑘) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) + ((𝑇‘𝑘) + (((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1)))) = (((𝑆‘𝑘) + (𝑇‘𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))))) |
| 403 | 395, 402 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1))) = (((𝑆‘𝑘) + (𝑇‘𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))))) |
| 404 | 382, 403 | eqeq12d 2637 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1))) ↔ ((𝑈‘(2 · 𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1)))) = (((𝑆‘𝑘) + (𝑇‘𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1)))))) |
| 405 | 271, 404 | syl5ibr 236 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘)) → (𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1))))) |
| 406 | 405 | expcom 451 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (𝜑 → ((𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘)) → (𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1)))))) |
| 407 | 406 | a2d 29 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → ((𝜑 → (𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘))) → (𝜑 → (𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1)))))) |
| 408 | 191, 198,
205, 212, 270, 407 | nnind 11038 |
. . . . 5
⊢
((⌊‘((𝑘
+ 1) / 2)) ∈ ℕ → (𝜑 → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2)))))) |
| 409 | 408 | impcom 446 |
. . . 4
⊢ ((𝜑 ∧ (⌊‘((𝑘 + 1) / 2)) ∈ ℕ)
→ (𝑈‘(2 ·
(⌊‘((𝑘 + 1) /
2)))) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2))))) |
| 410 | 61, 409 | syldan 487 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2))))) |
| 411 | 67 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (vol*‘𝐴) ∈
ℝ) |
| 412 | 411 | recnd 10068 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (vol*‘𝐴) ∈
ℂ) |
| 413 | 72 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐶 ∈ ℝ) |
| 414 | 413 | rehalfcld 11279 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐶 / 2) ∈ ℝ) |
| 415 | 414 | recnd 10068 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐶 / 2) ∈ ℂ) |
| 416 | 69 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (vol*‘𝐵) ∈
ℝ) |
| 417 | 416 | recnd 10068 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (vol*‘𝐵) ∈
ℂ) |
| 418 | 412, 415,
417, 415 | add4d 10264 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((vol*‘𝐴) + (𝐶 / 2)) + ((vol*‘𝐵) + (𝐶 / 2))) = (((vol*‘𝐴) + (vol*‘𝐵)) + ((𝐶 / 2) + (𝐶 / 2)))) |
| 419 | 413 | recnd 10068 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐶 ∈ ℂ) |
| 420 | 419 | 2halvesd 11278 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐶 / 2) + (𝐶 / 2)) = 𝐶) |
| 421 | 420 | oveq2d 6666 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((vol*‘𝐴) + (vol*‘𝐵)) + ((𝐶 / 2) + (𝐶 / 2))) = (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) |
| 422 | 418, 421 | eqtr2d 2657 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) = (((vol*‘𝐴) + (𝐶 / 2)) + ((vol*‘𝐵) + (𝐶 / 2)))) |
| 423 | 184, 410,
422 | 3brtr4d 4685 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) ≤
(((vol*‘𝐴) +
(vol*‘𝐵)) + 𝐶)) |
| 424 | 30, 65, 74, 104, 423 | letrd 10194 |
1
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) |