| Step | Hyp | Ref
| Expression |
| 1 | | inss1 3833 |
. . . . 5
⊢ (𝐸 ∩ 𝐵) ⊆ 𝐸 |
| 2 | 1 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝐸 ∩ 𝐵) ⊆ 𝐸) |
| 3 | | ioombl1.e |
. . . 4
⊢ (𝜑 → 𝐸 ⊆ ℝ) |
| 4 | | ioombl1.v |
. . . 4
⊢ (𝜑 → (vol*‘𝐸) ∈
ℝ) |
| 5 | | ovolsscl 23254 |
. . . 4
⊢ (((𝐸 ∩ 𝐵) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) →
(vol*‘(𝐸 ∩ 𝐵)) ∈
ℝ) |
| 6 | 2, 3, 4, 5 | syl3anc 1326 |
. . 3
⊢ (𝜑 → (vol*‘(𝐸 ∩ 𝐵)) ∈ ℝ) |
| 7 | | difss 3737 |
. . . . 5
⊢ (𝐸 ∖ 𝐵) ⊆ 𝐸 |
| 8 | 7 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝐸 ∖ 𝐵) ⊆ 𝐸) |
| 9 | | ovolsscl 23254 |
. . . 4
⊢ (((𝐸 ∖ 𝐵) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) →
(vol*‘(𝐸 ∖
𝐵)) ∈
ℝ) |
| 10 | 8, 3, 4, 9 | syl3anc 1326 |
. . 3
⊢ (𝜑 → (vol*‘(𝐸 ∖ 𝐵)) ∈ ℝ) |
| 11 | 6, 10 | readdcld 10069 |
. 2
⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐵)) + (vol*‘(𝐸 ∖ 𝐵))) ∈ ℝ) |
| 12 | | ioombl1.b |
. . 3
⊢ 𝐵 = (𝐴(,)+∞) |
| 13 | | ioombl1.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 14 | | ioombl1.c |
. . 3
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
| 15 | | ioombl1.s |
. . 3
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
| 16 | | ioombl1.t |
. . 3
⊢ 𝑇 = seq1( + , ((abs ∘
− ) ∘ 𝐺)) |
| 17 | | ioombl1.u |
. . 3
⊢ 𝑈 = seq1( + , ((abs ∘
− ) ∘ 𝐻)) |
| 18 | | ioombl1.f1 |
. . 3
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 19 | | ioombl1.f2 |
. . 3
⊢ (𝜑 → 𝐸 ⊆ ∪ ran
((,) ∘ 𝐹)) |
| 20 | | ioombl1.f3 |
. . 3
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤
((vol*‘𝐸) + 𝐶)) |
| 21 | | ioombl1.p |
. . 3
⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) |
| 22 | | ioombl1.q |
. . 3
⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) |
| 23 | | ioombl1.g |
. . 3
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) |
| 24 | | ioombl1.h |
. . 3
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) |
| 25 | 12, 13, 3, 4, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 | ioombl1lem2 23327 |
. 2
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈
ℝ) |
| 26 | 14 | rpred 11872 |
. . 3
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 27 | 4, 26 | readdcld 10069 |
. 2
⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ) |
| 28 | 12, 13, 3, 4, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 | ioombl1lem1 23326 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ)) ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ
× ℝ)))) |
| 29 | 28 | simpld 475 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 30 | | eqid 2622 |
. . . . . . . . 9
⊢ ((abs
∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺) |
| 31 | 30, 16 | ovolsf 23241 |
. . . . . . . 8
⊢ (𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞)) |
| 32 | 29, 31 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑇:ℕ⟶(0[,)+∞)) |
| 33 | | frn 6053 |
. . . . . . 7
⊢ (𝑇:ℕ⟶(0[,)+∞)
→ ran 𝑇 ⊆
(0[,)+∞)) |
| 34 | 32, 33 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran 𝑇 ⊆ (0[,)+∞)) |
| 35 | | rge0ssre 12280 |
. . . . . 6
⊢
(0[,)+∞) ⊆ ℝ |
| 36 | 34, 35 | syl6ss 3615 |
. . . . 5
⊢ (𝜑 → ran 𝑇 ⊆ ℝ) |
| 37 | | 1nn 11031 |
. . . . . . . 8
⊢ 1 ∈
ℕ |
| 38 | | fdm 6051 |
. . . . . . . . 9
⊢ (𝑇:ℕ⟶(0[,)+∞)
→ dom 𝑇 =
ℕ) |
| 39 | 32, 38 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑇 = ℕ) |
| 40 | 37, 39 | syl5eleqr 2708 |
. . . . . . 7
⊢ (𝜑 → 1 ∈ dom 𝑇) |
| 41 | | ne0i 3921 |
. . . . . . 7
⊢ (1 ∈
dom 𝑇 → dom 𝑇 ≠ ∅) |
| 42 | 40, 41 | syl 17 |
. . . . . 6
⊢ (𝜑 → dom 𝑇 ≠ ∅) |
| 43 | | dm0rn0 5342 |
. . . . . . 7
⊢ (dom
𝑇 = ∅ ↔ ran
𝑇 =
∅) |
| 44 | 43 | necon3bii 2846 |
. . . . . 6
⊢ (dom
𝑇 ≠ ∅ ↔ ran
𝑇 ≠
∅) |
| 45 | 42, 44 | sylib 208 |
. . . . 5
⊢ (𝜑 → ran 𝑇 ≠ ∅) |
| 46 | 32 | ffvelrnda 6359 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇‘𝑗) ∈ (0[,)+∞)) |
| 47 | 35, 46 | sseldi 3601 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇‘𝑗) ∈ ℝ) |
| 48 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ ((abs
∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) |
| 49 | 48, 15 | ovolsf 23241 |
. . . . . . . . . . . 12
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
| 50 | 18, 49 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
| 51 | 50 | ffvelrnda 6359 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑆‘𝑗) ∈ (0[,)+∞)) |
| 52 | 35, 51 | sseldi 3601 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑆‘𝑗) ∈ ℝ) |
| 53 | 25 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → sup(ran 𝑆, ℝ*, < )
∈ ℝ) |
| 54 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
| 55 | | nnuz 11723 |
. . . . . . . . . . . 12
⊢ ℕ =
(ℤ≥‘1) |
| 56 | 54, 55 | syl6eleq 2711 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
(ℤ≥‘1)) |
| 57 | | simpl 473 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝜑) |
| 58 | | elfznn 12370 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (1...𝑗) → 𝑛 ∈ ℕ) |
| 59 | 30 | ovolfsf 23240 |
. . . . . . . . . . . . . . 15
⊢ (𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞)) |
| 60 | 29, 59 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((abs ∘ − )
∘ 𝐺):ℕ⟶(0[,)+∞)) |
| 61 | 60 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑛) ∈ (0[,)+∞)) |
| 62 | 35, 61 | sseldi 3601 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑛) ∈ ℝ) |
| 63 | 57, 58, 62 | syl2an 494 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘
𝐺)‘𝑛) ∈ ℝ) |
| 64 | 48 | ovolfsf 23240 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞)) |
| 65 | 18, 64 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((abs ∘ − )
∘ 𝐹):ℕ⟶(0[,)+∞)) |
| 66 | 65 | ffvelrnda 6359 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑛) ∈ (0[,)+∞)) |
| 67 | | elrege0 12278 |
. . . . . . . . . . . . . 14
⊢ ((((abs
∘ − ) ∘ 𝐹)‘𝑛) ∈ (0[,)+∞) ↔ ((((abs
∘ − ) ∘ 𝐹)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘
− ) ∘ 𝐹)‘𝑛))) |
| 68 | 66, 67 | sylib 208 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((((abs ∘
− ) ∘ 𝐹)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘
− ) ∘ 𝐹)‘𝑛))) |
| 69 | 68 | simpld 475 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑛) ∈ ℝ) |
| 70 | 57, 58, 69 | syl2an 494 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘
𝐹)‘𝑛) ∈ ℝ) |
| 71 | 28 | simprd 479 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐻:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 72 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((abs
∘ − ) ∘ 𝐻) = ((abs ∘ − ) ∘ 𝐻) |
| 73 | 72 | ovolfsf 23240 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐻):ℕ⟶(0[,)+∞)) |
| 74 | 71, 73 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((abs ∘ − )
∘ 𝐻):ℕ⟶(0[,)+∞)) |
| 75 | 74 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘𝑛) ∈ (0[,)+∞)) |
| 76 | | elrege0 12278 |
. . . . . . . . . . . . . . . 16
⊢ ((((abs
∘ − ) ∘ 𝐻)‘𝑛) ∈ (0[,)+∞) ↔ ((((abs
∘ − ) ∘ 𝐻)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘
− ) ∘ 𝐻)‘𝑛))) |
| 77 | 75, 76 | sylib 208 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((((abs ∘
− ) ∘ 𝐻)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘
− ) ∘ 𝐻)‘𝑛))) |
| 78 | 77 | simprd 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤ (((abs ∘
− ) ∘ 𝐻)‘𝑛)) |
| 79 | 77 | simpld 475 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘𝑛) ∈ ℝ) |
| 80 | 62, 79 | addge01d 10615 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (0 ≤ (((abs
∘ − ) ∘ 𝐻)‘𝑛) ↔ (((abs ∘ − ) ∘
𝐺)‘𝑛) ≤ ((((abs ∘ − ) ∘
𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)))) |
| 81 | 78, 80 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑛) ≤ ((((abs ∘ − ) ∘
𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛))) |
| 82 | 12, 13, 3, 4, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 | ioombl1lem3 23328 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((((abs ∘
− ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)) = (((abs ∘ − ) ∘ 𝐹)‘𝑛)) |
| 83 | 81, 82 | breqtrd 4679 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑛) ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛)) |
| 84 | 57, 58, 83 | syl2an 494 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘
𝐺)‘𝑛) ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛)) |
| 85 | 56, 63, 70, 84 | serle 12856 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘𝑗) ≤ (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑗)) |
| 86 | 16 | fveq1i 6192 |
. . . . . . . . . 10
⊢ (𝑇‘𝑗) = (seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑗) |
| 87 | 15 | fveq1i 6192 |
. . . . . . . . . 10
⊢ (𝑆‘𝑗) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑗) |
| 88 | 85, 86, 87 | 3brtr4g 4687 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇‘𝑗) ≤ (𝑆‘𝑗)) |
| 89 | | 1zzd 11408 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ∈
ℤ) |
| 90 | | eqidd 2623 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑛) = (((abs ∘ − ) ∘ 𝐹)‘𝑛)) |
| 91 | 68 | simprd 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤ (((abs ∘
− ) ∘ 𝐹)‘𝑛)) |
| 92 | | frn 6053 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑆:ℕ⟶(0[,)+∞)
→ ran 𝑆 ⊆
(0[,)+∞)) |
| 93 | 50, 92 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
| 94 | | icossxr 12258 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(0[,)+∞) ⊆ ℝ* |
| 95 | 93, 94 | syl6ss 3615 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ran 𝑆 ⊆
ℝ*) |
| 96 | 95 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran 𝑆 ⊆
ℝ*) |
| 97 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑆:ℕ⟶(0[,)+∞)
→ 𝑆 Fn
ℕ) |
| 98 | 50, 97 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑆 Fn ℕ) |
| 99 | | fnfvelrn 6356 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑆 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ ran 𝑆) |
| 100 | 98, 99 | sylan 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ ran 𝑆) |
| 101 | | supxrub 12154 |
. . . . . . . . . . . . . . . . . 18
⊢ ((ran
𝑆 ⊆
ℝ* ∧ (𝑆‘𝑘) ∈ ran 𝑆) → (𝑆‘𝑘) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 102 | 96, 100, 101 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 103 | 102 | ralrimiva 2966 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 104 | | breq2 4657 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = sup(ran 𝑆, ℝ*, < ) → ((𝑆‘𝑘) ≤ 𝑥 ↔ (𝑆‘𝑘) ≤ sup(ran 𝑆, ℝ*, <
))) |
| 105 | 104 | ralbidv 2986 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = sup(ran 𝑆, ℝ*, < ) →
(∀𝑘 ∈ ℕ
(𝑆‘𝑘) ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ sup(ran 𝑆, ℝ*, <
))) |
| 106 | 105 | rspcev 3309 |
. . . . . . . . . . . . . . . 16
⊢ ((sup(ran
𝑆, ℝ*,
< ) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ sup(ran 𝑆, ℝ*, < )) →
∃𝑥 ∈ ℝ
∀𝑘 ∈ ℕ
(𝑆‘𝑘) ≤ 𝑥) |
| 107 | 25, 103, 106 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑥) |
| 108 | 55, 15, 89, 90, 69, 91, 107 | isumsup2 14578 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ⇝ sup(ran 𝑆, ℝ, < )) |
| 109 | 93, 35 | syl6ss 3615 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ran 𝑆 ⊆ ℝ) |
| 110 | | fdm 6051 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑆:ℕ⟶(0[,)+∞)
→ dom 𝑆 =
ℕ) |
| 111 | 50, 110 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → dom 𝑆 = ℕ) |
| 112 | 37, 111 | syl5eleqr 2708 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 1 ∈ dom 𝑆) |
| 113 | | ne0i 3921 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
dom 𝑆 → dom 𝑆 ≠ ∅) |
| 114 | 112, 113 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → dom 𝑆 ≠ ∅) |
| 115 | | dm0rn0 5342 |
. . . . . . . . . . . . . . . . 17
⊢ (dom
𝑆 = ∅ ↔ ran
𝑆 =
∅) |
| 116 | 115 | necon3bii 2846 |
. . . . . . . . . . . . . . . 16
⊢ (dom
𝑆 ≠ ∅ ↔ ran
𝑆 ≠
∅) |
| 117 | 114, 116 | sylib 208 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ran 𝑆 ≠ ∅) |
| 118 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑆‘𝑘) → (𝑧 ≤ 𝑥 ↔ (𝑆‘𝑘) ≤ 𝑥)) |
| 119 | 118 | ralrn 6362 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆 Fn ℕ →
(∀𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑥)) |
| 120 | 98, 119 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (∀𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑥)) |
| 121 | 120 | rexbidv 3052 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ 𝑥)) |
| 122 | 107, 121 | mpbird 247 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥) |
| 123 | | supxrre 12157 |
. . . . . . . . . . . . . . 15
⊢ ((ran
𝑆 ⊆ ℝ ∧ ran
𝑆 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥) → sup(ran 𝑆, ℝ*, < ) = sup(ran
𝑆, ℝ, <
)) |
| 124 | 109, 117,
122, 123 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran
𝑆, ℝ, <
)) |
| 125 | 108, 124 | breqtrrd 4681 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ⇝ sup(ran 𝑆, ℝ*, <
)) |
| 126 | 125 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑆 ⇝ sup(ran 𝑆, ℝ*, <
)) |
| 127 | 15, 126 | syl5eqbrr 4689 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → seq1( + , ((abs
∘ − ) ∘ 𝐹)) ⇝ sup(ran 𝑆, ℝ*, <
)) |
| 128 | 69 | adantlr 751 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑛) ∈ ℝ) |
| 129 | 91 | adantlr 751 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → 0 ≤ (((abs ∘
− ) ∘ 𝐹)‘𝑛)) |
| 130 | 55, 54, 127, 128, 129 | climserle 14393 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐹))‘𝑗) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 131 | 87, 130 | syl5eqbr 4688 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑆‘𝑗) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 132 | 47, 52, 53, 88, 131 | letrd 10194 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇‘𝑗) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 133 | 132 | ralrimiva 2966 |
. . . . . . 7
⊢ (𝜑 → ∀𝑗 ∈ ℕ (𝑇‘𝑗) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 134 | | breq2 4657 |
. . . . . . . . 9
⊢ (𝑥 = sup(ran 𝑆, ℝ*, < ) → ((𝑇‘𝑗) ≤ 𝑥 ↔ (𝑇‘𝑗) ≤ sup(ran 𝑆, ℝ*, <
))) |
| 135 | 134 | ralbidv 2986 |
. . . . . . . 8
⊢ (𝑥 = sup(ran 𝑆, ℝ*, < ) →
(∀𝑗 ∈ ℕ
(𝑇‘𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ ℕ (𝑇‘𝑗) ≤ sup(ran 𝑆, ℝ*, <
))) |
| 136 | 135 | rspcev 3309 |
. . . . . . 7
⊢ ((sup(ran
𝑆, ℝ*,
< ) ∈ ℝ ∧ ∀𝑗 ∈ ℕ (𝑇‘𝑗) ≤ sup(ran 𝑆, ℝ*, < )) →
∃𝑥 ∈ ℝ
∀𝑗 ∈ ℕ
(𝑇‘𝑗) ≤ 𝑥) |
| 137 | 25, 133, 136 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝑇‘𝑗) ≤ 𝑥) |
| 138 | | ffn 6045 |
. . . . . . . . 9
⊢ (𝑇:ℕ⟶(0[,)+∞)
→ 𝑇 Fn
ℕ) |
| 139 | 32, 138 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 Fn ℕ) |
| 140 | | breq1 4656 |
. . . . . . . . 9
⊢ (𝑧 = (𝑇‘𝑗) → (𝑧 ≤ 𝑥 ↔ (𝑇‘𝑗) ≤ 𝑥)) |
| 141 | 140 | ralrn 6362 |
. . . . . . . 8
⊢ (𝑇 Fn ℕ →
(∀𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ↔ ∀𝑗 ∈ ℕ (𝑇‘𝑗) ≤ 𝑥)) |
| 142 | 139, 141 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (∀𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ↔ ∀𝑗 ∈ ℕ (𝑇‘𝑗) ≤ 𝑥)) |
| 143 | 142 | rexbidv 3052 |
. . . . . 6
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝑇‘𝑗) ≤ 𝑥)) |
| 144 | 137, 143 | mpbird 247 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥) |
| 145 | | suprcl 10983 |
. . . . 5
⊢ ((ran
𝑇 ⊆ ℝ ∧ ran
𝑇 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥) → sup(ran 𝑇, ℝ, < ) ∈
ℝ) |
| 146 | 36, 45, 144, 145 | syl3anc 1326 |
. . . 4
⊢ (𝜑 → sup(ran 𝑇, ℝ, < ) ∈
ℝ) |
| 147 | 72, 17 | ovolsf 23241 |
. . . . . . . 8
⊢ (𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑈:ℕ⟶(0[,)+∞)) |
| 148 | 71, 147 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑈:ℕ⟶(0[,)+∞)) |
| 149 | | frn 6053 |
. . . . . . 7
⊢ (𝑈:ℕ⟶(0[,)+∞)
→ ran 𝑈 ⊆
(0[,)+∞)) |
| 150 | 148, 149 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran 𝑈 ⊆ (0[,)+∞)) |
| 151 | 150, 35 | syl6ss 3615 |
. . . . 5
⊢ (𝜑 → ran 𝑈 ⊆ ℝ) |
| 152 | | fdm 6051 |
. . . . . . . . 9
⊢ (𝑈:ℕ⟶(0[,)+∞)
→ dom 𝑈 =
ℕ) |
| 153 | 148, 152 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑈 = ℕ) |
| 154 | 37, 153 | syl5eleqr 2708 |
. . . . . . 7
⊢ (𝜑 → 1 ∈ dom 𝑈) |
| 155 | | ne0i 3921 |
. . . . . . 7
⊢ (1 ∈
dom 𝑈 → dom 𝑈 ≠ ∅) |
| 156 | 154, 155 | syl 17 |
. . . . . 6
⊢ (𝜑 → dom 𝑈 ≠ ∅) |
| 157 | | dm0rn0 5342 |
. . . . . . 7
⊢ (dom
𝑈 = ∅ ↔ ran
𝑈 =
∅) |
| 158 | 157 | necon3bii 2846 |
. . . . . 6
⊢ (dom
𝑈 ≠ ∅ ↔ ran
𝑈 ≠
∅) |
| 159 | 156, 158 | sylib 208 |
. . . . 5
⊢ (𝜑 → ran 𝑈 ≠ ∅) |
| 160 | 148 | ffvelrnda 6359 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑈‘𝑗) ∈ (0[,)+∞)) |
| 161 | 35, 160 | sseldi 3601 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑈‘𝑗) ∈ ℝ) |
| 162 | 57, 58, 79 | syl2an 494 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘
𝐻)‘𝑛) ∈ ℝ) |
| 163 | | elrege0 12278 |
. . . . . . . . . . . . . . . 16
⊢ ((((abs
∘ − ) ∘ 𝐺)‘𝑛) ∈ (0[,)+∞) ↔ ((((abs
∘ − ) ∘ 𝐺)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘
− ) ∘ 𝐺)‘𝑛))) |
| 164 | 61, 163 | sylib 208 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((((abs ∘
− ) ∘ 𝐺)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘
− ) ∘ 𝐺)‘𝑛))) |
| 165 | 164 | simprd 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤ (((abs ∘
− ) ∘ 𝐺)‘𝑛)) |
| 166 | 79, 62 | addge02d 10616 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (0 ≤ (((abs
∘ − ) ∘ 𝐺)‘𝑛) ↔ (((abs ∘ − ) ∘
𝐻)‘𝑛) ≤ ((((abs ∘ − ) ∘
𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)))) |
| 167 | 165, 166 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘𝑛) ≤ ((((abs ∘ − ) ∘
𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛))) |
| 168 | 167, 82 | breqtrd 4679 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘𝑛) ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛)) |
| 169 | 57, 58, 168 | syl2an 494 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘
𝐻)‘𝑛) ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛)) |
| 170 | 56, 162, 70, 169 | serle 12856 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘𝑗) ≤ (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑗)) |
| 171 | 17 | fveq1i 6192 |
. . . . . . . . . 10
⊢ (𝑈‘𝑗) = (seq1( + , ((abs ∘ − )
∘ 𝐻))‘𝑗) |
| 172 | 170, 171,
87 | 3brtr4g 4687 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑈‘𝑗) ≤ (𝑆‘𝑗)) |
| 173 | 161, 52, 53, 172, 131 | letrd 10194 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑈‘𝑗) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 174 | 173 | ralrimiva 2966 |
. . . . . . 7
⊢ (𝜑 → ∀𝑗 ∈ ℕ (𝑈‘𝑗) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 175 | | breq2 4657 |
. . . . . . . . 9
⊢ (𝑥 = sup(ran 𝑆, ℝ*, < ) → ((𝑈‘𝑗) ≤ 𝑥 ↔ (𝑈‘𝑗) ≤ sup(ran 𝑆, ℝ*, <
))) |
| 176 | 175 | ralbidv 2986 |
. . . . . . . 8
⊢ (𝑥 = sup(ran 𝑆, ℝ*, < ) →
(∀𝑗 ∈ ℕ
(𝑈‘𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ ℕ (𝑈‘𝑗) ≤ sup(ran 𝑆, ℝ*, <
))) |
| 177 | 176 | rspcev 3309 |
. . . . . . 7
⊢ ((sup(ran
𝑆, ℝ*,
< ) ∈ ℝ ∧ ∀𝑗 ∈ ℕ (𝑈‘𝑗) ≤ sup(ran 𝑆, ℝ*, < )) →
∃𝑥 ∈ ℝ
∀𝑗 ∈ ℕ
(𝑈‘𝑗) ≤ 𝑥) |
| 178 | 25, 174, 177 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝑈‘𝑗) ≤ 𝑥) |
| 179 | | ffn 6045 |
. . . . . . . . 9
⊢ (𝑈:ℕ⟶(0[,)+∞)
→ 𝑈 Fn
ℕ) |
| 180 | 148, 179 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 Fn ℕ) |
| 181 | | breq1 4656 |
. . . . . . . . 9
⊢ (𝑧 = (𝑈‘𝑗) → (𝑧 ≤ 𝑥 ↔ (𝑈‘𝑗) ≤ 𝑥)) |
| 182 | 181 | ralrn 6362 |
. . . . . . . 8
⊢ (𝑈 Fn ℕ →
(∀𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑥 ↔ ∀𝑗 ∈ ℕ (𝑈‘𝑗) ≤ 𝑥)) |
| 183 | 180, 182 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (∀𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑥 ↔ ∀𝑗 ∈ ℕ (𝑈‘𝑗) ≤ 𝑥)) |
| 184 | 183 | rexbidv 3052 |
. . . . . 6
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝑈‘𝑗) ≤ 𝑥)) |
| 185 | 178, 184 | mpbird 247 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑥) |
| 186 | | suprcl 10983 |
. . . . 5
⊢ ((ran
𝑈 ⊆ ℝ ∧ ran
𝑈 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑥) → sup(ran 𝑈, ℝ, < ) ∈
ℝ) |
| 187 | 151, 159,
185, 186 | syl3anc 1326 |
. . . 4
⊢ (𝜑 → sup(ran 𝑈, ℝ, < ) ∈
ℝ) |
| 188 | | ssralv 3666 |
. . . . . . . . . 10
⊢ ((𝐸 ∩ 𝐵) ⊆ 𝐸 → (∀𝑥 ∈ 𝐸 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))) → ∀𝑥 ∈ (𝐸 ∩ 𝐵)∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))))) |
| 189 | 1, 188 | ax-mp 5 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐸 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))) → ∀𝑥 ∈ (𝐸 ∩ 𝐵)∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛)))) |
| 190 | 21 | breq1i 4660 |
. . . . . . . . . . . . 13
⊢ (𝑃 < 𝑥 ↔ (1st ‘(𝐹‘𝑛)) < 𝑥) |
| 191 | | ovolfcl 23235 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
| 192 | 18, 191 | sylan 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
| 193 | 192 | simp1d 1073 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ∈
ℝ) |
| 194 | 21, 193 | syl5eqel 2705 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ ℝ) |
| 195 | 194 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ ℝ) |
| 196 | 1, 3 | syl5ss 3614 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐸 ∩ 𝐵) ⊆ ℝ) |
| 197 | 196 | sselda 3603 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) → 𝑥 ∈ ℝ) |
| 198 | 197 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ) |
| 199 | | ltle 10126 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑃 < 𝑥 → 𝑃 ≤ 𝑥)) |
| 200 | 195, 198,
199 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑃 < 𝑥 → 𝑃 ≤ 𝑥)) |
| 201 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 202 | | opex 4932 |
. . . . . . . . . . . . . . . . . . . 20
⊢
〈if(if(𝑃 ≤
𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉 ∈ V |
| 203 | 23 | fvmpt2 6291 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℕ ∧
〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉 ∈ V) → (𝐺‘𝑛) = 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) |
| 204 | 201, 202,
203 | sylancl 694 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) = 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) |
| 205 | 204 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) = (1st
‘〈if(if(𝑃 ≤
𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉)) |
| 206 | 13 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 207 | 206, 194 | ifcld 4131 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ∈ ℝ) |
| 208 | 192 | simp2d 1074 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) ∈
ℝ) |
| 209 | 22, 208 | syl5eqel 2705 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑄 ∈ ℝ) |
| 210 | 207, 209 | ifcld 4131 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) |
| 211 | | op1stg 7180 |
. . . . . . . . . . . . . . . . . . 19
⊢
((if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ ∧ 𝑄 ∈ ℝ) → (1st
‘〈if(if(𝑃 ≤
𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
| 212 | 210, 209,
211 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘〈if(if(𝑃 ≤
𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
| 213 | 205, 212 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
| 214 | 213 | ad2ant2r 783 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥)) → (1st ‘(𝐺‘𝑛)) = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
| 215 | 210 | ad2ant2r 783 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥)) → if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) |
| 216 | 207 | ad2ant2r 783 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥)) → if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ∈ ℝ) |
| 217 | 196 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥)) → (𝐸 ∩ 𝐵) ⊆ ℝ) |
| 218 | | simplr 792 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥)) → 𝑥 ∈ (𝐸 ∩ 𝐵)) |
| 219 | 217, 218 | sseldd 3604 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥)) → 𝑥 ∈ ℝ) |
| 220 | 209 | ad2ant2r 783 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥)) → 𝑄 ∈ ℝ) |
| 221 | | min1 12020 |
. . . . . . . . . . . . . . . . . 18
⊢
((if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ∈ ℝ ∧ 𝑄 ∈ ℝ) → if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ≤ if(𝑃 ≤ 𝐴, 𝐴, 𝑃)) |
| 222 | 216, 220,
221 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥)) → if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ≤ if(𝑃 ≤ 𝐴, 𝐴, 𝑃)) |
| 223 | 13 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥)) → 𝐴 ∈ ℝ) |
| 224 | | inss2 3834 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐸 ∩ 𝐵) ⊆ 𝐵 |
| 225 | 224 | sseli 3599 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (𝐸 ∩ 𝐵) → 𝑥 ∈ 𝐵) |
| 226 | 225 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥)) → 𝑥 ∈ 𝐵) |
| 227 | 13 | rexrd 10089 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 228 | | pnfxr 10092 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ +∞
∈ ℝ* |
| 229 | | elioo2 12216 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ ℝ*
∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞))) |
| 230 | 227, 228,
229 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞))) |
| 231 | 12 | eleq2i 2693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝐴(,)+∞)) |
| 232 | | ltpnf 11954 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) |
| 233 | 232 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 𝑥 < +∞) |
| 234 | 233 | pm4.71i 664 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 𝑥 < +∞)) |
| 235 | | df-3an 1039 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 𝑥 < +∞)) |
| 236 | 234, 235 | bitr4i 267 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞)) |
| 237 | 230, 231,
236 | 3bitr4g 303 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥))) |
| 238 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 𝐴 < 𝑥) |
| 239 | 237, 238 | syl6bi 243 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝐴 < 𝑥)) |
| 240 | 239 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥)) → (𝑥 ∈ 𝐵 → 𝐴 < 𝑥)) |
| 241 | 226, 240 | mpd 15 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥)) → 𝐴 < 𝑥) |
| 242 | 223, 219,
241 | ltled 10185 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥)) → 𝐴 ≤ 𝑥) |
| 243 | | simprr 796 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥)) → 𝑃 ≤ 𝑥) |
| 244 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 = if(𝑃 ≤ 𝐴, 𝐴, 𝑃) → (𝐴 ≤ 𝑥 ↔ if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑥)) |
| 245 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 = if(𝑃 ≤ 𝐴, 𝐴, 𝑃) → (𝑃 ≤ 𝑥 ↔ if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑥)) |
| 246 | 244, 245 | ifboth 4124 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ≤ 𝑥 ∧ 𝑃 ≤ 𝑥) → if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑥) |
| 247 | 242, 243,
246 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥)) → if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑥) |
| 248 | 215, 216,
219, 222, 247 | letrd 10194 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥)) → if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ≤ 𝑥) |
| 249 | 214, 248 | eqbrtrd 4675 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃 ≤ 𝑥)) → (1st ‘(𝐺‘𝑛)) ≤ 𝑥) |
| 250 | 249 | expr 643 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑃 ≤ 𝑥 → (1st ‘(𝐺‘𝑛)) ≤ 𝑥)) |
| 251 | 200, 250 | syld 47 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑃 < 𝑥 → (1st ‘(𝐺‘𝑛)) ≤ 𝑥)) |
| 252 | 190, 251 | syl5bir 233 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) < 𝑥 → (1st ‘(𝐺‘𝑛)) ≤ 𝑥)) |
| 253 | 22 | breq2i 4661 |
. . . . . . . . . . . . . 14
⊢ (𝑥 < 𝑄 ↔ 𝑥 < (2nd ‘(𝐹‘𝑛))) |
| 254 | 209 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑄 ∈ ℝ) |
| 255 | | ltle 10126 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑄 ∈ ℝ) → (𝑥 < 𝑄 → 𝑥 ≤ 𝑄)) |
| 256 | 198, 254,
255 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < 𝑄 → 𝑥 ≤ 𝑄)) |
| 257 | 253, 256 | syl5bir 233 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < (2nd ‘(𝐹‘𝑛)) → 𝑥 ≤ 𝑄)) |
| 258 | 204 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐺‘𝑛)) = (2nd
‘〈if(if(𝑃 ≤
𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉)) |
| 259 | | op2ndg 7181 |
. . . . . . . . . . . . . . . . 17
⊢
((if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ ∧ 𝑄 ∈ ℝ) → (2nd
‘〈if(if(𝑃 ≤
𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) = 𝑄) |
| 260 | 210, 209,
259 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘〈if(if(𝑃 ≤
𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) = 𝑄) |
| 261 | 258, 260 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐺‘𝑛)) = 𝑄) |
| 262 | 261 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐺‘𝑛)) = 𝑄) |
| 263 | 262 | breq2d 4665 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 ≤ (2nd ‘(𝐺‘𝑛)) ↔ 𝑥 ≤ 𝑄)) |
| 264 | 257, 263 | sylibrd 249 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < (2nd ‘(𝐹‘𝑛)) → 𝑥 ≤ (2nd ‘(𝐺‘𝑛)))) |
| 265 | 252, 264 | anim12d 586 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) ∧ 𝑛 ∈ ℕ) → (((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))) → ((1st ‘(𝐺‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐺‘𝑛))))) |
| 266 | 265 | reximdva 3017 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐸 ∩ 𝐵)) → (∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))) → ∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐺‘𝑛))))) |
| 267 | 266 | ralimdva 2962 |
. . . . . . . . 9
⊢ (𝜑 → (∀𝑥 ∈ (𝐸 ∩ 𝐵)∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))) → ∀𝑥 ∈ (𝐸 ∩ 𝐵)∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐺‘𝑛))))) |
| 268 | 189, 267 | syl5 34 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑥 ∈ 𝐸 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))) → ∀𝑥 ∈ (𝐸 ∩ 𝐵)∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐺‘𝑛))))) |
| 269 | | ovolfioo 23236 |
. . . . . . . . 9
⊢ ((𝐸 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐸 ⊆ ∪ ran
((,) ∘ 𝐹) ↔
∀𝑥 ∈ 𝐸 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))))) |
| 270 | 3, 18, 269 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → (𝐸 ⊆ ∪ ran
((,) ∘ 𝐹) ↔
∀𝑥 ∈ 𝐸 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))))) |
| 271 | | ovolficc 23237 |
. . . . . . . . 9
⊢ (((𝐸 ∩ 𝐵) ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) → ((𝐸 ∩ 𝐵) ⊆ ∪ ran
([,] ∘ 𝐺) ↔
∀𝑥 ∈ (𝐸 ∩ 𝐵)∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐺‘𝑛))))) |
| 272 | 196, 29, 271 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → ((𝐸 ∩ 𝐵) ⊆ ∪ ran
([,] ∘ 𝐺) ↔
∀𝑥 ∈ (𝐸 ∩ 𝐵)∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐺‘𝑛))))) |
| 273 | 268, 270,
272 | 3imtr4d 283 |
. . . . . . 7
⊢ (𝜑 → (𝐸 ⊆ ∪ ran
((,) ∘ 𝐹) →
(𝐸 ∩ 𝐵) ⊆ ∪ ran
([,] ∘ 𝐺))) |
| 274 | 19, 273 | mpd 15 |
. . . . . 6
⊢ (𝜑 → (𝐸 ∩ 𝐵) ⊆ ∪ ran
([,] ∘ 𝐺)) |
| 275 | 16 | ovollb2 23257 |
. . . . . 6
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ (𝐸 ∩ 𝐵) ⊆ ∪ ran
([,] ∘ 𝐺)) →
(vol*‘(𝐸 ∩ 𝐵)) ≤ sup(ran 𝑇, ℝ*, <
)) |
| 276 | 29, 274, 275 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (vol*‘(𝐸 ∩ 𝐵)) ≤ sup(ran 𝑇, ℝ*, <
)) |
| 277 | | supxrre 12157 |
. . . . . 6
⊢ ((ran
𝑇 ⊆ ℝ ∧ ran
𝑇 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥) → sup(ran 𝑇, ℝ*, < ) = sup(ran
𝑇, ℝ, <
)) |
| 278 | 36, 45, 144, 277 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) = sup(ran
𝑇, ℝ, <
)) |
| 279 | 276, 278 | breqtrd 4679 |
. . . 4
⊢ (𝜑 → (vol*‘(𝐸 ∩ 𝐵)) ≤ sup(ran 𝑇, ℝ, < )) |
| 280 | | ssralv 3666 |
. . . . . . . . . 10
⊢ ((𝐸 ∖ 𝐵) ⊆ 𝐸 → (∀𝑥 ∈ 𝐸 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))) → ∀𝑥 ∈ (𝐸 ∖ 𝐵)∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))))) |
| 281 | 7, 280 | ax-mp 5 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐸 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))) → ∀𝑥 ∈ (𝐸 ∖ 𝐵)∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛)))) |
| 282 | 194 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ ℝ) |
| 283 | 7, 3 | syl5ss 3614 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐸 ∖ 𝐵) ⊆ ℝ) |
| 284 | 283 | sselda 3603 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) → 𝑥 ∈ ℝ) |
| 285 | 284 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ) |
| 286 | 282, 285,
199 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑃 < 𝑥 → 𝑃 ≤ 𝑥)) |
| 287 | 190, 286 | syl5bir 233 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) < 𝑥 → 𝑃 ≤ 𝑥)) |
| 288 | | opex 4932 |
. . . . . . . . . . . . . . . . . 18
⊢
〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉 ∈ V |
| 289 | 24 | fvmpt2 6291 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℕ ∧
〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉 ∈ V) → (𝐻‘𝑛) = 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) |
| 290 | 201, 288,
289 | sylancl 694 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐻‘𝑛) = 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) |
| 291 | 290 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐻‘𝑛)) = (1st
‘〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉)) |
| 292 | | op1stg 7180 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ ℝ ∧
if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) → (1st
‘〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) = 𝑃) |
| 293 | 194, 210,
292 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) = 𝑃) |
| 294 | 291, 293 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐻‘𝑛)) = 𝑃) |
| 295 | 294 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐻‘𝑛)) = 𝑃) |
| 296 | 295 | breq1d 4663 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐻‘𝑛)) ≤ 𝑥 ↔ 𝑃 ≤ 𝑥)) |
| 297 | 287, 296 | sylibrd 249 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) < 𝑥 → (1st ‘(𝐻‘𝑛)) ≤ 𝑥)) |
| 298 | 209 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑄 ∈ ℝ) |
| 299 | 285, 298,
255 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < 𝑄 → 𝑥 ≤ 𝑄)) |
| 300 | 283 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → (𝐸 ∖ 𝐵) ⊆ ℝ) |
| 301 | | simplr 792 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → 𝑥 ∈ (𝐸 ∖ 𝐵)) |
| 302 | 300, 301 | sseldd 3604 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → 𝑥 ∈ ℝ) |
| 303 | 13 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → 𝐴 ∈ ℝ) |
| 304 | 194 | ad2ant2r 783 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → 𝑃 ∈ ℝ) |
| 305 | 303, 304 | ifcld 4131 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ∈ ℝ) |
| 306 | | eldifn 3733 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (𝐸 ∖ 𝐵) → ¬ 𝑥 ∈ 𝐵) |
| 307 | 306 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → ¬ 𝑥 ∈ 𝐵) |
| 308 | 302 | biantrurd 529 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → (𝐴 < 𝑥 ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥))) |
| 309 | 237 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥))) |
| 310 | 308, 309 | bitr4d 271 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → (𝐴 < 𝑥 ↔ 𝑥 ∈ 𝐵)) |
| 311 | 307, 310 | mtbird 315 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → ¬ 𝐴 < 𝑥) |
| 312 | 302, 303 | lenltd 10183 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) |
| 313 | 311, 312 | mpbird 247 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → 𝑥 ≤ 𝐴) |
| 314 | | max2 12018 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ if(𝑃 ≤ 𝐴, 𝐴, 𝑃)) |
| 315 | 304, 303,
314 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → 𝐴 ≤ if(𝑃 ≤ 𝐴, 𝐴, 𝑃)) |
| 316 | 302, 303,
305, 313, 315 | letrd 10194 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → 𝑥 ≤ if(𝑃 ≤ 𝐴, 𝐴, 𝑃)) |
| 317 | | simprr 796 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → 𝑥 ≤ 𝑄) |
| 318 | | breq2 4657 |
. . . . . . . . . . . . . . . . . 18
⊢ (if(𝑃 ≤ 𝐴, 𝐴, 𝑃) = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) → (𝑥 ≤ if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ↔ 𝑥 ≤ if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄))) |
| 319 | | breq2 4657 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑄 = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) → (𝑥 ≤ 𝑄 ↔ 𝑥 ≤ if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄))) |
| 320 | 318, 319 | ifboth 4124 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ≤ if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ∧ 𝑥 ≤ 𝑄) → 𝑥 ≤ if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
| 321 | 316, 317,
320 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → 𝑥 ≤ if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
| 322 | 290 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐻‘𝑛)) = (2nd
‘〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉)) |
| 323 | | op2ndg 7181 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃 ∈ ℝ ∧
if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) → (2nd
‘〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
| 324 | 194, 210,
323 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
| 325 | 322, 324 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐻‘𝑛)) = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
| 326 | 325 | ad2ant2r 783 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → (2nd ‘(𝐻‘𝑛)) = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
| 327 | 321, 326 | breqtrrd 4681 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑄)) → 𝑥 ≤ (2nd ‘(𝐻‘𝑛))) |
| 328 | 327 | expr 643 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 ≤ 𝑄 → 𝑥 ≤ (2nd ‘(𝐻‘𝑛)))) |
| 329 | 299, 328 | syld 47 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < 𝑄 → 𝑥 ≤ (2nd ‘(𝐻‘𝑛)))) |
| 330 | 253, 329 | syl5bir 233 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < (2nd ‘(𝐹‘𝑛)) → 𝑥 ≤ (2nd ‘(𝐻‘𝑛)))) |
| 331 | 297, 330 | anim12d 586 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) ∧ 𝑛 ∈ ℕ) → (((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))) → ((1st ‘(𝐻‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐻‘𝑛))))) |
| 332 | 331 | reximdva 3017 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐸 ∖ 𝐵)) → (∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))) → ∃𝑛 ∈ ℕ ((1st
‘(𝐻‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐻‘𝑛))))) |
| 333 | 332 | ralimdva 2962 |
. . . . . . . . 9
⊢ (𝜑 → (∀𝑥 ∈ (𝐸 ∖ 𝐵)∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))) → ∀𝑥 ∈ (𝐸 ∖ 𝐵)∃𝑛 ∈ ℕ ((1st
‘(𝐻‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐻‘𝑛))))) |
| 334 | 281, 333 | syl5 34 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑥 ∈ 𝐸 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))) → ∀𝑥 ∈ (𝐸 ∖ 𝐵)∃𝑛 ∈ ℕ ((1st
‘(𝐻‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐻‘𝑛))))) |
| 335 | | ovolficc 23237 |
. . . . . . . . 9
⊢ (((𝐸 ∖ 𝐵) ⊆ ℝ ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) → ((𝐸 ∖ 𝐵) ⊆ ∪ ran
([,] ∘ 𝐻) ↔
∀𝑥 ∈ (𝐸 ∖ 𝐵)∃𝑛 ∈ ℕ ((1st
‘(𝐻‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐻‘𝑛))))) |
| 336 | 283, 71, 335 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → ((𝐸 ∖ 𝐵) ⊆ ∪ ran
([,] ∘ 𝐻) ↔
∀𝑥 ∈ (𝐸 ∖ 𝐵)∃𝑛 ∈ ℕ ((1st
‘(𝐻‘𝑛)) ≤ 𝑥 ∧ 𝑥 ≤ (2nd ‘(𝐻‘𝑛))))) |
| 337 | 334, 270,
336 | 3imtr4d 283 |
. . . . . . 7
⊢ (𝜑 → (𝐸 ⊆ ∪ ran
((,) ∘ 𝐹) →
(𝐸 ∖ 𝐵) ⊆ ∪ ran ([,] ∘ 𝐻))) |
| 338 | 19, 337 | mpd 15 |
. . . . . 6
⊢ (𝜑 → (𝐸 ∖ 𝐵) ⊆ ∪ ran
([,] ∘ 𝐻)) |
| 339 | 17 | ovollb2 23257 |
. . . . . 6
⊢ ((𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ (𝐸 ∖ 𝐵) ⊆ ∪ ran
([,] ∘ 𝐻)) →
(vol*‘(𝐸 ∖
𝐵)) ≤ sup(ran 𝑈, ℝ*, <
)) |
| 340 | 71, 338, 339 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (vol*‘(𝐸 ∖ 𝐵)) ≤ sup(ran 𝑈, ℝ*, <
)) |
| 341 | | supxrre 12157 |
. . . . . 6
⊢ ((ran
𝑈 ⊆ ℝ ∧ ran
𝑈 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑥) → sup(ran 𝑈, ℝ*, < ) = sup(ran
𝑈, ℝ, <
)) |
| 342 | 151, 159,
185, 341 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → sup(ran 𝑈, ℝ*, < ) = sup(ran
𝑈, ℝ, <
)) |
| 343 | 340, 342 | breqtrd 4679 |
. . . 4
⊢ (𝜑 → (vol*‘(𝐸 ∖ 𝐵)) ≤ sup(ran 𝑈, ℝ, < )) |
| 344 | 6, 10, 146, 187, 279, 343 | le2addd 10646 |
. . 3
⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐵)) + (vol*‘(𝐸 ∖ 𝐵))) ≤ (sup(ran 𝑇, ℝ, < ) + sup(ran 𝑈, ℝ, <
))) |
| 345 | | eqidd 2623 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑛) = (((abs ∘ − ) ∘ 𝐺)‘𝑛)) |
| 346 | 55, 16, 89, 345, 62, 165, 137 | isumsup2 14578 |
. . . . 5
⊢ (𝜑 → 𝑇 ⇝ sup(ran 𝑇, ℝ, < )) |
| 347 | | seqex 12803 |
. . . . . . 7
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝐹)) ∈ V |
| 348 | 15, 347 | eqeltri 2697 |
. . . . . 6
⊢ 𝑆 ∈ V |
| 349 | 348 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ V) |
| 350 | | eqidd 2623 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘𝑛) = (((abs ∘ − ) ∘ 𝐻)‘𝑛)) |
| 351 | 55, 17, 89, 350, 79, 78, 178 | isumsup2 14578 |
. . . . 5
⊢ (𝜑 → 𝑈 ⇝ sup(ran 𝑈, ℝ, < )) |
| 352 | 47 | recnd 10068 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇‘𝑗) ∈ ℂ) |
| 353 | 161 | recnd 10068 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑈‘𝑗) ∈ ℂ) |
| 354 | 62 | recnd 10068 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑛) ∈ ℂ) |
| 355 | 57, 58, 354 | syl2an 494 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘
𝐺)‘𝑛) ∈ ℂ) |
| 356 | 79 | recnd 10068 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘𝑛) ∈ ℂ) |
| 357 | 57, 58, 356 | syl2an 494 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘
𝐻)‘𝑛) ∈ ℂ) |
| 358 | 82 | eqcomd 2628 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑛) = ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛))) |
| 359 | 57, 58, 358 | syl2an 494 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘
𝐹)‘𝑛) = ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛))) |
| 360 | 56, 355, 357, 359 | seradd 12843 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐹))‘𝑗) = ((seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑗) + (seq1( + , ((abs ∘
− ) ∘ 𝐻))‘𝑗))) |
| 361 | 86, 171 | oveq12i 6662 |
. . . . . 6
⊢ ((𝑇‘𝑗) + (𝑈‘𝑗)) = ((seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑗) + (seq1( + , ((abs ∘
− ) ∘ 𝐻))‘𝑗)) |
| 362 | 360, 87, 361 | 3eqtr4g 2681 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑆‘𝑗) = ((𝑇‘𝑗) + (𝑈‘𝑗))) |
| 363 | 55, 89, 346, 349, 351, 352, 353, 362 | climadd 14362 |
. . . 4
⊢ (𝜑 → 𝑆 ⇝ (sup(ran 𝑇, ℝ, < ) + sup(ran 𝑈, ℝ, <
))) |
| 364 | | climuni 14283 |
. . . 4
⊢ ((𝑆 ⇝ (sup(ran 𝑇, ℝ, < ) + sup(ran
𝑈, ℝ, < )) ∧
𝑆 ⇝ sup(ran 𝑆, ℝ*, < ))
→ (sup(ran 𝑇, ℝ,
< ) + sup(ran 𝑈,
ℝ, < )) = sup(ran 𝑆, ℝ*, <
)) |
| 365 | 363, 125,
364 | syl2anc 693 |
. . 3
⊢ (𝜑 → (sup(ran 𝑇, ℝ, < ) + sup(ran 𝑈, ℝ, < )) = sup(ran
𝑆, ℝ*,
< )) |
| 366 | 344, 365 | breqtrd 4679 |
. 2
⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐵)) + (vol*‘(𝐸 ∖ 𝐵))) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 367 | 11, 25, 27, 366, 20 | letrd 10194 |
1
⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐵)) + (vol*‘(𝐸 ∖ 𝐵))) ≤ ((vol*‘𝐸) + 𝐶)) |