MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3brtr4g Structured version   Visualization version   Unicode version

Theorem 3brtr4g 4687
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
Hypotheses
Ref Expression
3brtr4g.1  |-  ( ph  ->  A R B )
3brtr4g.2  |-  C  =  A
3brtr4g.3  |-  D  =  B
Assertion
Ref Expression
3brtr4g  |-  ( ph  ->  C R D )

Proof of Theorem 3brtr4g
StepHypRef Expression
1 3brtr4g.1 . 2  |-  ( ph  ->  A R B )
2 3brtr4g.2 . . 3  |-  C  =  A
3 3brtr4g.3 . . 3  |-  D  =  B
42, 3breq12i 4662 . 2  |-  ( C R D  <->  A R B )
51, 4sylibr 224 1  |-  ( ph  ->  C R D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   class class class wbr 4653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654
This theorem is referenced by:  syl5eqbr  4688  limensuci  8136  infensuc  8138  rlimneg  14377  isumsup2  14578  crth  15483  4sqlem6  15647  gzrngunit  19812  matgsum  20243  ovolunlem1a  23264  ovolfiniun  23269  ioombl1lem1  23326  ioombl1lem4  23329  iblss  23571  itgle  23576  dvfsumlem3  23791  emcllem6  24727  gausslemma2dlem0f  25086  gausslemma2dlem0g  25087  pntpbnd1a  25274  ostth2lem4  25325  omsmon  30360  itg2gt0cn  33465  dalem-cly  34957  dalem10  34959  fourierdlem103  40426  fourierdlem104  40427
  Copyright terms: Public domain W3C validator