| Step | Hyp | Ref
| Expression |
| 1 | | elfzoelz 12470 |
. . . . . 6
⊢ (𝑥 ∈ (0..^(𝑀 · 𝑁)) → 𝑥 ∈ ℤ) |
| 2 | | crth.1 |
. . . . . 6
⊢ 𝑆 = (0..^(𝑀 · 𝑁)) |
| 3 | 1, 2 | eleq2s 2719 |
. . . . 5
⊢ (𝑥 ∈ 𝑆 → 𝑥 ∈ ℤ) |
| 4 | | simpr 477 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) |
| 5 | | crth.4 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) |
| 6 | 5 | simp1d 1073 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 7 | 6 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑀 ∈ ℕ) |
| 8 | | zmodfzo 12693 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑥 mod 𝑀) ∈ (0..^𝑀)) |
| 9 | 4, 7, 8 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝑥 mod 𝑀) ∈ (0..^𝑀)) |
| 10 | 5 | simp2d 1074 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 11 | 10 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℕ) |
| 12 | | zmodfzo 12693 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑥 mod 𝑁) ∈ (0..^𝑁)) |
| 13 | 4, 11, 12 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝑥 mod 𝑁) ∈ (0..^𝑁)) |
| 14 | | opelxpi 5148 |
. . . . . . 7
⊢ (((𝑥 mod 𝑀) ∈ (0..^𝑀) ∧ (𝑥 mod 𝑁) ∈ (0..^𝑁)) → 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉 ∈ ((0..^𝑀) × (0..^𝑁))) |
| 15 | 9, 13, 14 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉 ∈ ((0..^𝑀) × (0..^𝑁))) |
| 16 | | crth.2 |
. . . . . 6
⊢ 𝑇 = ((0..^𝑀) × (0..^𝑁)) |
| 17 | 15, 16 | syl6eleqr 2712 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉 ∈ 𝑇) |
| 18 | 3, 17 | sylan2 491 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉 ∈ 𝑇) |
| 19 | | crth.3 |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉) |
| 20 | 18, 19 | fmptd 6385 |
. . 3
⊢ (𝜑 → 𝐹:𝑆⟶𝑇) |
| 21 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 mod 𝑀) = (𝑦 mod 𝑀)) |
| 22 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 mod 𝑁) = (𝑦 mod 𝑁)) |
| 23 | 21, 22 | opeq12d 4410 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉 = 〈(𝑦 mod 𝑀), (𝑦 mod 𝑁)〉) |
| 24 | | opex 4932 |
. . . . . . . . 9
⊢
〈(𝑦 mod 𝑀), (𝑦 mod 𝑁)〉 ∈ V |
| 25 | 23, 19, 24 | fvmpt 6282 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑆 → (𝐹‘𝑦) = 〈(𝑦 mod 𝑀), (𝑦 mod 𝑁)〉) |
| 26 | 25 | ad2antrl 764 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝐹‘𝑦) = 〈(𝑦 mod 𝑀), (𝑦 mod 𝑁)〉) |
| 27 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑥 mod 𝑀) = (𝑧 mod 𝑀)) |
| 28 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑥 mod 𝑁) = (𝑧 mod 𝑁)) |
| 29 | 27, 28 | opeq12d 4410 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉 = 〈(𝑧 mod 𝑀), (𝑧 mod 𝑁)〉) |
| 30 | | opex 4932 |
. . . . . . . . 9
⊢
〈(𝑧 mod 𝑀), (𝑧 mod 𝑁)〉 ∈ V |
| 31 | 29, 19, 30 | fvmpt 6282 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑆 → (𝐹‘𝑧) = 〈(𝑧 mod 𝑀), (𝑧 mod 𝑁)〉) |
| 32 | 31 | ad2antll 765 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝐹‘𝑧) = 〈(𝑧 mod 𝑀), (𝑧 mod 𝑁)〉) |
| 33 | 26, 32 | eqeq12d 2637 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ 〈(𝑦 mod 𝑀), (𝑦 mod 𝑁)〉 = 〈(𝑧 mod 𝑀), (𝑧 mod 𝑁)〉)) |
| 34 | | ovex 6678 |
. . . . . . 7
⊢ (𝑦 mod 𝑀) ∈ V |
| 35 | | ovex 6678 |
. . . . . . 7
⊢ (𝑦 mod 𝑁) ∈ V |
| 36 | 34, 35 | opth 4945 |
. . . . . 6
⊢
(〈(𝑦 mod 𝑀), (𝑦 mod 𝑁)〉 = 〈(𝑧 mod 𝑀), (𝑧 mod 𝑁)〉 ↔ ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁))) |
| 37 | 33, 36 | syl6bb 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁)))) |
| 38 | 6 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑀 ∈ ℕ) |
| 39 | 38 | nnzd 11481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑀 ∈ ℤ) |
| 40 | 10 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑁 ∈ ℕ) |
| 41 | 40 | nnzd 11481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑁 ∈ ℤ) |
| 42 | | simprl 794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑦 ∈ 𝑆) |
| 43 | 42, 2 | syl6eleq 2711 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑦 ∈ (0..^(𝑀 · 𝑁))) |
| 44 | | elfzoelz 12470 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 𝑦 ∈ ℤ) |
| 45 | 43, 44 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑦 ∈ ℤ) |
| 46 | | simprr 796 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 ∈ 𝑆) |
| 47 | 46, 2 | syl6eleq 2711 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 ∈ (0..^(𝑀 · 𝑁))) |
| 48 | | elfzoelz 12470 |
. . . . . . . . 9
⊢ (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 𝑧 ∈ ℤ) |
| 49 | 47, 48 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 ∈ ℤ) |
| 50 | 45, 49 | zsubcld 11487 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦 − 𝑧) ∈ ℤ) |
| 51 | 5 | simp3d 1075 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
| 52 | 51 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑀 gcd 𝑁) = 1) |
| 53 | | coprmdvds2 15368 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑦 − 𝑧) ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 ∥ (𝑦 − 𝑧) ∧ 𝑁 ∥ (𝑦 − 𝑧)) → (𝑀 · 𝑁) ∥ (𝑦 − 𝑧))) |
| 54 | 39, 41, 50, 52, 53 | syl31anc 1329 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑀 ∥ (𝑦 − 𝑧) ∧ 𝑁 ∥ (𝑦 − 𝑧)) → (𝑀 · 𝑁) ∥ (𝑦 − 𝑧))) |
| 55 | | moddvds 14991 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ↔ 𝑀 ∥ (𝑦 − 𝑧))) |
| 56 | 38, 45, 49, 55 | syl3anc 1326 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ↔ 𝑀 ∥ (𝑦 − 𝑧))) |
| 57 | | moddvds 14991 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ (𝑦 − 𝑧))) |
| 58 | 40, 45, 49, 57 | syl3anc 1326 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑦 mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ (𝑦 − 𝑧))) |
| 59 | 56, 58 | anbi12d 747 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁)) ↔ (𝑀 ∥ (𝑦 − 𝑧) ∧ 𝑁 ∥ (𝑦 − 𝑧)))) |
| 60 | 45 | zred 11482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑦 ∈ ℝ) |
| 61 | 38, 40 | nnmulcld 11068 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑀 · 𝑁) ∈ ℕ) |
| 62 | 61 | nnrpd 11870 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑀 · 𝑁) ∈
ℝ+) |
| 63 | | elfzole1 12478 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 0 ≤ 𝑦) |
| 64 | 43, 63 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 0 ≤ 𝑦) |
| 65 | | elfzolt2 12479 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 𝑦 < (𝑀 · 𝑁)) |
| 66 | 43, 65 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑦 < (𝑀 · 𝑁)) |
| 67 | | modid 12695 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ℝ ∧ (𝑀 · 𝑁) ∈ ℝ+) ∧ (0 ≤
𝑦 ∧ 𝑦 < (𝑀 · 𝑁))) → (𝑦 mod (𝑀 · 𝑁)) = 𝑦) |
| 68 | 60, 62, 64, 66, 67 | syl22anc 1327 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦 mod (𝑀 · 𝑁)) = 𝑦) |
| 69 | 49 | zred 11482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 ∈ ℝ) |
| 70 | | elfzole1 12478 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 0 ≤ 𝑧) |
| 71 | 47, 70 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 0 ≤ 𝑧) |
| 72 | | elfzolt2 12479 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 𝑧 < (𝑀 · 𝑁)) |
| 73 | 47, 72 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 < (𝑀 · 𝑁)) |
| 74 | | modid 12695 |
. . . . . . . . 9
⊢ (((𝑧 ∈ ℝ ∧ (𝑀 · 𝑁) ∈ ℝ+) ∧ (0 ≤
𝑧 ∧ 𝑧 < (𝑀 · 𝑁))) → (𝑧 mod (𝑀 · 𝑁)) = 𝑧) |
| 75 | 69, 62, 71, 73, 74 | syl22anc 1327 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑧 mod (𝑀 · 𝑁)) = 𝑧) |
| 76 | 68, 75 | eqeq12d 2637 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ 𝑦 = 𝑧)) |
| 77 | | moddvds 14991 |
. . . . . . . 8
⊢ (((𝑀 · 𝑁) ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ (𝑀 · 𝑁) ∥ (𝑦 − 𝑧))) |
| 78 | 61, 45, 49, 77 | syl3anc 1326 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ (𝑀 · 𝑁) ∥ (𝑦 − 𝑧))) |
| 79 | 76, 78 | bitr3d 270 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦 = 𝑧 ↔ (𝑀 · 𝑁) ∥ (𝑦 − 𝑧))) |
| 80 | 54, 59, 79 | 3imtr4d 283 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁)) → 𝑦 = 𝑧)) |
| 81 | 37, 80 | sylbid 230 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
| 82 | 81 | ralrimivva 2971 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
| 83 | | dff13 6512 |
. . 3
⊢ (𝐹:𝑆–1-1→𝑇 ↔ (𝐹:𝑆⟶𝑇 ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧))) |
| 84 | 20, 82, 83 | sylanbrc 698 |
. 2
⊢ (𝜑 → 𝐹:𝑆–1-1→𝑇) |
| 85 | | nnnn0 11299 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
| 86 | | nnnn0 11299 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 87 | | nn0mulcl 11329 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 · 𝑁) ∈
ℕ0) |
| 88 | | hashfzo0 13217 |
. . . . . . . . 9
⊢ ((𝑀 · 𝑁) ∈ ℕ0 →
(#‘(0..^(𝑀 ·
𝑁))) = (𝑀 · 𝑁)) |
| 89 | 87, 88 | syl 17 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (#‘(0..^(𝑀 · 𝑁))) = (𝑀 · 𝑁)) |
| 90 | | fzofi 12773 |
. . . . . . . . . 10
⊢
(0..^𝑀) ∈
Fin |
| 91 | | fzofi 12773 |
. . . . . . . . . 10
⊢
(0..^𝑁) ∈
Fin |
| 92 | | hashxp 13221 |
. . . . . . . . . 10
⊢
(((0..^𝑀) ∈ Fin
∧ (0..^𝑁) ∈ Fin)
→ (#‘((0..^𝑀)
× (0..^𝑁))) =
((#‘(0..^𝑀)) ·
(#‘(0..^𝑁)))) |
| 93 | 90, 91, 92 | mp2an 708 |
. . . . . . . . 9
⊢
(#‘((0..^𝑀)
× (0..^𝑁))) =
((#‘(0..^𝑀)) ·
(#‘(0..^𝑁))) |
| 94 | | hashfzo0 13217 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ0
→ (#‘(0..^𝑀)) =
𝑀) |
| 95 | | hashfzo0 13217 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (#‘(0..^𝑁)) =
𝑁) |
| 96 | 94, 95 | oveqan12d 6669 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((#‘(0..^𝑀)) · (#‘(0..^𝑁))) = (𝑀 · 𝑁)) |
| 97 | 93, 96 | syl5eq 2668 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (#‘((0..^𝑀) × (0..^𝑁))) = (𝑀 · 𝑁)) |
| 98 | 89, 97 | eqtr4d 2659 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (#‘(0..^(𝑀 · 𝑁))) = (#‘((0..^𝑀) × (0..^𝑁)))) |
| 99 | | fzofi 12773 |
. . . . . . . 8
⊢
(0..^(𝑀 ·
𝑁)) ∈
Fin |
| 100 | | xpfi 8231 |
. . . . . . . . 9
⊢
(((0..^𝑀) ∈ Fin
∧ (0..^𝑁) ∈ Fin)
→ ((0..^𝑀) ×
(0..^𝑁)) ∈
Fin) |
| 101 | 90, 91, 100 | mp2an 708 |
. . . . . . . 8
⊢
((0..^𝑀) ×
(0..^𝑁)) ∈
Fin |
| 102 | | hashen 13135 |
. . . . . . . 8
⊢
(((0..^(𝑀 ·
𝑁)) ∈ Fin ∧
((0..^𝑀) × (0..^𝑁)) ∈ Fin) →
((#‘(0..^(𝑀 ·
𝑁))) = (#‘((0..^𝑀) × (0..^𝑁))) ↔ (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁)))) |
| 103 | 99, 101, 102 | mp2an 708 |
. . . . . . 7
⊢
((#‘(0..^(𝑀
· 𝑁))) =
(#‘((0..^𝑀) ×
(0..^𝑁))) ↔
(0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁))) |
| 104 | 98, 103 | sylib 208 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁))) |
| 105 | 85, 86, 104 | syl2an 494 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) →
(0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁))) |
| 106 | 6, 10, 105 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁))) |
| 107 | 106, 2, 16 | 3brtr4g 4687 |
. . 3
⊢ (𝜑 → 𝑆 ≈ 𝑇) |
| 108 | 16, 101 | eqeltri 2697 |
. . 3
⊢ 𝑇 ∈ Fin |
| 109 | | f1finf1o 8187 |
. . 3
⊢ ((𝑆 ≈ 𝑇 ∧ 𝑇 ∈ Fin) → (𝐹:𝑆–1-1→𝑇 ↔ 𝐹:𝑆–1-1-onto→𝑇)) |
| 110 | 107, 108,
109 | sylancl 694 |
. 2
⊢ (𝜑 → (𝐹:𝑆–1-1→𝑇 ↔ 𝐹:𝑆–1-1-onto→𝑇)) |
| 111 | 84, 110 | mpbid 222 |
1
⊢ (𝜑 → 𝐹:𝑆–1-1-onto→𝑇) |