![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limensuci | Structured version Visualization version GIF version |
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.) |
Ref | Expression |
---|---|
limensuci.1 | ⊢ Lim 𝐴 |
Ref | Expression |
---|---|
limensuci | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limensuci.1 | . . . . 5 ⊢ Lim 𝐴 | |
2 | 1 | limenpsi 8135 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (𝐴 ∖ {∅})) |
3 | 2 | ensymd 8007 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ {∅}) ≈ 𝐴) |
4 | 0ex 4790 | . . . 4 ⊢ ∅ ∈ V | |
5 | en2sn 8037 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → {∅} ≈ {𝐴}) | |
6 | 4, 5 | mpan 706 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {∅} ≈ {𝐴}) |
7 | incom 3805 | . . . . 5 ⊢ ((𝐴 ∖ {∅}) ∩ {∅}) = ({∅} ∩ (𝐴 ∖ {∅})) | |
8 | disjdif 4040 | . . . . 5 ⊢ ({∅} ∩ (𝐴 ∖ {∅})) = ∅ | |
9 | 7, 8 | eqtri 2644 | . . . 4 ⊢ ((𝐴 ∖ {∅}) ∩ {∅}) = ∅ |
10 | limord 5784 | . . . . . . 7 ⊢ (Lim 𝐴 → Ord 𝐴) | |
11 | 1, 10 | ax-mp 5 | . . . . . 6 ⊢ Ord 𝐴 |
12 | ordirr 5741 | . . . . . 6 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ ¬ 𝐴 ∈ 𝐴 |
14 | disjsn 4246 | . . . . 5 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
15 | 13, 14 | mpbir 221 | . . . 4 ⊢ (𝐴 ∩ {𝐴}) = ∅ |
16 | unen 8040 | . . . 4 ⊢ ((((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) ∧ (((𝐴 ∖ {∅}) ∩ {∅}) = ∅ ∧ (𝐴 ∩ {𝐴}) = ∅)) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴})) | |
17 | 9, 15, 16 | mpanr12 721 | . . 3 ⊢ (((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴})) |
18 | 3, 6, 17 | syl2anc 693 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴})) |
19 | 0ellim 5787 | . . . . . 6 ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) | |
20 | 1, 19 | ax-mp 5 | . . . . 5 ⊢ ∅ ∈ 𝐴 |
21 | 4 | snss 4316 | . . . . 5 ⊢ (∅ ∈ 𝐴 ↔ {∅} ⊆ 𝐴) |
22 | 20, 21 | mpbi 220 | . . . 4 ⊢ {∅} ⊆ 𝐴 |
23 | undif 4049 | . . . 4 ⊢ ({∅} ⊆ 𝐴 ↔ ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴) | |
24 | 22, 23 | mpbi 220 | . . 3 ⊢ ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴 |
25 | uncom 3757 | . . 3 ⊢ ({∅} ∪ (𝐴 ∖ {∅})) = ((𝐴 ∖ {∅}) ∪ {∅}) | |
26 | 24, 25 | eqtr3i 2646 | . 2 ⊢ 𝐴 = ((𝐴 ∖ {∅}) ∪ {∅}) |
27 | df-suc 5729 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
28 | 18, 26, 27 | 3brtr4g 4687 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∖ cdif 3571 ∪ cun 3572 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 {csn 4177 class class class wbr 4653 Ord word 5722 Lim wlim 5724 suc csuc 5725 ≈ cen 7952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 |
This theorem is referenced by: limensuc 8137 infensuc 8138 omensuc 8553 |
Copyright terms: Public domain | W3C validator |