MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matgsum Structured version   Visualization version   GIF version

Theorem matgsum 20243
Description: Finite commutative sums in a matrix algebra are taken componentwise. (Contributed by AV, 26-Sep-2019.)
Hypotheses
Ref Expression
matgsum.a 𝐴 = (𝑁 Mat 𝑅)
matgsum.b 𝐵 = (Base‘𝐴)
matgsum.z 0 = (0g𝐴)
matgsum.i (𝜑𝑁 ∈ Fin)
matgsum.j (𝜑𝐽𝑊)
matgsum.r (𝜑𝑅 ∈ Ring)
matgsum.f ((𝜑𝑦𝐽) → (𝑖𝑁, 𝑗𝑁𝑈) ∈ 𝐵)
matgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) finSupp 0 )
Assertion
Ref Expression
matgsum (𝜑 → (𝐴 Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑖,𝐽,𝑗,𝑦   𝑖,𝑁,𝑗,𝑦   𝑅,𝑖,𝑗,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑖,𝑗)   𝐴(𝑦,𝑖,𝑗)   𝐵(𝑦,𝑖,𝑗)   𝑈(𝑦,𝑖,𝑗)   𝑊(𝑦,𝑖,𝑗)   0 (𝑦,𝑖,𝑗)

Proof of Theorem matgsum
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 matgsum.j . . . 4 (𝜑𝐽𝑊)
2 mptexg 6484 . . . 4 (𝐽𝑊 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) ∈ V)
31, 2syl 17 . . 3 (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) ∈ V)
4 matgsum.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 ovex 6678 . . . . 5 (𝑁 Mat 𝑅) ∈ V
64, 5eqeltri 2697 . . . 4 𝐴 ∈ V
76a1i 11 . . 3 (𝜑𝐴 ∈ V)
8 ovexd 6680 . . 3 (𝜑 → (𝑅 freeLMod (𝑁 × 𝑁)) ∈ V)
9 matgsum.i . . . . 5 (𝜑𝑁 ∈ Fin)
10 matgsum.r . . . . 5 (𝜑𝑅 ∈ Ring)
11 eqid 2622 . . . . . 6 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
124, 11matbas 20219 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
139, 10, 12syl2anc 693 . . . 4 (𝜑 → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
1413eqcomd 2628 . . 3 (𝜑 → (Base‘𝐴) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
154, 11matplusg 20220 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g𝐴))
169, 10, 15syl2anc 693 . . . 4 (𝜑 → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g𝐴))
1716eqcomd 2628 . . 3 (𝜑 → (+g𝐴) = (+g‘(𝑅 freeLMod (𝑁 × 𝑁))))
183, 7, 8, 14, 17gsumpropd 17272 . 2 (𝜑 → (𝐴 Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))))
19 mpt2mpts 7234 . . . . . 6 (𝑖𝑁, 𝑗𝑁𝑈) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)
2019a1i 11 . . . . 5 (𝜑 → (𝑖𝑁, 𝑗𝑁𝑈) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))
2120mpteq2dv 4745 . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) = (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)))
2221oveq2d 6666 . . 3 (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))))
23 eqid 2622 . . . 4 (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))
24 eqid 2622 . . . 4 (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (0g‘(𝑅 freeLMod (𝑁 × 𝑁)))
25 xpfi 8231 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
269, 9, 25syl2anc 693 . . . 4 (𝜑 → (𝑁 × 𝑁) ∈ Fin)
27 matgsum.f . . . . . 6 ((𝜑𝑦𝐽) → (𝑖𝑁, 𝑗𝑁𝑈) ∈ 𝐵)
28 matgsum.b . . . . . 6 𝐵 = (Base‘𝐴)
2927, 28syl6eleq 2711 . . . . 5 ((𝜑𝑦𝐽) → (𝑖𝑁, 𝑗𝑁𝑈) ∈ (Base‘𝐴))
3019eqcomi 2631 . . . . . 6 (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈) = (𝑖𝑁, 𝑗𝑁𝑈)
3130a1i 11 . . . . 5 ((𝜑𝑦𝐽) → (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈) = (𝑖𝑁, 𝑗𝑁𝑈))
329, 10jca 554 . . . . . . 7 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3332adantr 481 . . . . . 6 ((𝜑𝑦𝐽) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3433, 12syl 17 . . . . 5 ((𝜑𝑦𝐽) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
3529, 31, 343eltr4d 2716 . . . 4 ((𝜑𝑦𝐽) → (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈) ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
36 matgsum.w . . . . . 6 (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) finSupp 0 )
3730mpteq2i 4741 . . . . . 6 (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) = (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))
38 matgsum.z . . . . . . 7 0 = (0g𝐴)
3938eqcomi 2631 . . . . . 6 (0g𝐴) = 0
4036, 37, 393brtr4g 4687 . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) finSupp (0g𝐴))
414, 11mat0 20223 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (0g𝐴))
429, 10, 41syl2anc 693 . . . . 5 (𝜑 → (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (0g𝐴))
4340, 42breqtrrd 4681 . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) finSupp (0g‘(𝑅 freeLMod (𝑁 × 𝑁))))
4411, 23, 24, 26, 1, 10, 35, 43frlmgsum 20111 . . 3 (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))))
4522, 44eqtrd 2656 . 2 (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))))
46 fvex 6201 . . . . . . . 8 (2nd𝑧) ∈ V
47 csbov2g 6691 . . . . . . . 8 ((2nd𝑧) ∈ V → (2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)) = (𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈)))
4846, 47ax-mp 5 . . . . . . 7 (2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)) = (𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈))
4948csbeq2i 3993 . . . . . 6 (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)) = (1st𝑧) / 𝑖(𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈))
50 fvex 6201 . . . . . . 7 (1st𝑧) ∈ V
51 csbov2g 6691 . . . . . . 7 ((1st𝑧) ∈ V → (1st𝑧) / 𝑖(𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈)) = (𝑅 Σg (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈)))
5250, 51ax-mp 5 . . . . . 6 (1st𝑧) / 𝑖(𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈)) = (𝑅 Σg (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈))
53 csbmpt2 5011 . . . . . . . . . 10 ((2nd𝑧) ∈ V → (2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (𝑦𝐽(2nd𝑧) / 𝑗𝑈))
5446, 53ax-mp 5 . . . . . . . . 9 (2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (𝑦𝐽(2nd𝑧) / 𝑗𝑈)
5554csbeq2i 3993 . . . . . . . 8 (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (1st𝑧) / 𝑖(𝑦𝐽(2nd𝑧) / 𝑗𝑈)
56 csbmpt2 5011 . . . . . . . . 9 ((1st𝑧) ∈ V → (1st𝑧) / 𝑖(𝑦𝐽(2nd𝑧) / 𝑗𝑈) = (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))
5750, 56ax-mp 5 . . . . . . . 8 (1st𝑧) / 𝑖(𝑦𝐽(2nd𝑧) / 𝑗𝑈) = (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)
5855, 57eqtri 2644 . . . . . . 7 (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)
5958oveq2i 6661 . . . . . 6 (𝑅 Σg (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈)) = (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))
6049, 52, 593eqtrri 2649 . . . . 5 (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) = (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈))
6160mpteq2i 4741 . . . 4 (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)))
62 mpt2mpts 7234 . . . 4 (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)))
6361, 62eqtr4i 2647 . . 3 (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈)))
6463a1i 11 . 2 (𝜑 → (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
6518, 45, 643eqtrd 2660 1 (𝜑 → (𝐴 Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  csb 3533   class class class wbr 4653  cmpt 4729   × cxp 5112  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  Fincfn 7955   finSupp cfsupp 8275  Basecbs 15857  +gcplusg 15941  0gc0g 16100   Σg cgsu 16101  Ringcrg 18547   freeLMod cfrlm 20090   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mat 20214
This theorem is referenced by:  decpmatmul  20577  pmatcollpw2  20583
  Copyright terms: Public domain W3C validator