MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablnncan Structured version   Visualization version   GIF version

Theorem ablnncan 18226
Description: Cancellation law for group subtraction. (nncan 10310 analog.) (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablnncan.b 𝐵 = (Base‘𝐺)
ablnncan.m = (-g𝐺)
ablnncan.g (𝜑𝐺 ∈ Abel)
ablnncan.x (𝜑𝑋𝐵)
ablnncan.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ablnncan (𝜑 → (𝑋 (𝑋 𝑌)) = 𝑌)

Proof of Theorem ablnncan
StepHypRef Expression
1 ablnncan.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2622 . . 3 (+g𝐺) = (+g𝐺)
3 ablnncan.m . . 3 = (-g𝐺)
4 ablnncan.g . . 3 (𝜑𝐺 ∈ Abel)
5 ablnncan.x . . 3 (𝜑𝑋𝐵)
6 ablnncan.y . . 3 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 5, 6ablsubsub 18223 . 2 (𝜑 → (𝑋 (𝑋 𝑌)) = ((𝑋 𝑋)(+g𝐺)𝑌))
8 ablgrp 18198 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
94, 8syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
10 eqid 2622 . . . . 5 (0g𝐺) = (0g𝐺)
111, 10, 3grpsubid 17499 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = (0g𝐺))
129, 5, 11syl2anc 693 . . 3 (𝜑 → (𝑋 𝑋) = (0g𝐺))
1312oveq1d 6665 . 2 (𝜑 → ((𝑋 𝑋)(+g𝐺)𝑌) = ((0g𝐺)(+g𝐺)𝑌))
141, 2, 10grplid 17452 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺)(+g𝐺)𝑌) = 𝑌)
159, 6, 14syl2anc 693 . 2 (𝜑 → ((0g𝐺)(+g𝐺)𝑌) = 𝑌)
167, 13, 153eqtrd 2660 1 (𝜑 → (𝑋 (𝑋 𝑌)) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Grpcgrp 17422  -gcsg 17424  Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196
This theorem is referenced by:  ablnnncan1  18229  pgpfac1lem3  18476  tsmsxplem1  21956  baerlem5blem2  37001
  Copyright terms: Public domain W3C validator