| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablpnpcan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for mixed addition and subtraction. (pnpcan 10320 analog.) (Contributed by NM, 29-May-2015.) |
| Ref | Expression |
|---|---|
| ablsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablsubadd.p | ⊢ + = (+g‘𝐺) |
| ablsubadd.m | ⊢ − = (-g‘𝐺) |
| ablsubsub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablsubsub.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ablsubsub.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ablsubsub.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| ablpnpcan.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablpnpcan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ablpnpcan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ablpnpcan.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ablpnpcan | ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = (𝑌 − 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubsub.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 2 | ablsubsub.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ablsubsub.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ablsubsub.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 5 | ablsubadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 6 | ablsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 7 | ablsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 8 | 5, 6, 7 | ablsub4 18218 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = ((𝑋 − 𝑋) + (𝑌 − 𝑍))) |
| 9 | 1, 2, 3, 2, 4, 8 | syl122anc 1335 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = ((𝑋 − 𝑋) + (𝑌 − 𝑍))) |
| 10 | ablgrp 18198 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 11 | 1, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 12 | eqid 2622 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 13 | 5, 12, 7 | grpsubid 17499 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (0g‘𝐺)) |
| 14 | 11, 2, 13 | syl2anc 693 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑋) = (0g‘𝐺)) |
| 15 | 14 | oveq1d 6665 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑋) + (𝑌 − 𝑍)) = ((0g‘𝐺) + (𝑌 − 𝑍))) |
| 16 | 5, 7 | grpsubcl 17495 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) ∈ 𝐵) |
| 17 | 11, 3, 4, 16 | syl3anc 1326 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) ∈ 𝐵) |
| 18 | 5, 6, 12 | grplid 17452 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑌 − 𝑍) ∈ 𝐵) → ((0g‘𝐺) + (𝑌 − 𝑍)) = (𝑌 − 𝑍)) |
| 19 | 11, 17, 18 | syl2anc 693 | . 2 ⊢ (𝜑 → ((0g‘𝐺) + (𝑌 − 𝑍)) = (𝑌 − 𝑍)) |
| 20 | 9, 15, 19 | 3eqtrd 2660 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = (𝑌 − 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 +gcplusg 15941 0gc0g 16100 Grpcgrp 17422 -gcsg 17424 Abelcabl 18194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-cmn 18195 df-abl 18196 |
| This theorem is referenced by: hdmaprnlem7N 37147 |
| Copyright terms: Public domain | W3C validator |