| Step | Hyp | Ref
| Expression |
| 1 | | tsmsxp.k |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐴 ∩ Fin)) |
| 2 | | elfpw 8268 |
. . . . 5
⊢ (𝐾 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐾 ⊆ 𝐴 ∧ 𝐾 ∈ Fin)) |
| 3 | 2 | simprbi 480 |
. . . 4
⊢ (𝐾 ∈ (𝒫 𝐴 ∩ Fin) → 𝐾 ∈ Fin) |
| 4 | 1, 3 | syl 17 |
. . 3
⊢ (𝜑 → 𝐾 ∈ Fin) |
| 5 | 2 | simplbi 476 |
. . . . . . 7
⊢ (𝐾 ∈ (𝒫 𝐴 ∩ Fin) → 𝐾 ⊆ 𝐴) |
| 6 | 1, 5 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐾 ⊆ 𝐴) |
| 7 | 6 | sselda 3603 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐾) → 𝑗 ∈ 𝐴) |
| 8 | | tsmsxp.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
| 9 | | tsmsxp.j |
. . . . . 6
⊢ 𝐽 = (TopOpen‘𝐺) |
| 10 | | eqid 2622 |
. . . . . 6
⊢
(𝒫 𝐶 ∩
Fin) = (𝒫 𝐶 ∩
Fin) |
| 11 | | tsmsxp.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 12 | 11 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐺 ∈ CMnd) |
| 13 | | tsmsxp.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ TopGrp) |
| 14 | | tgptps 21884 |
. . . . . . . 8
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) |
| 15 | 13, 14 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ TopSp) |
| 16 | 15 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐺 ∈ TopSp) |
| 17 | | tsmsxp.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| 18 | 17 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑊) |
| 19 | | tsmsxp.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
| 20 | | fovrn 6804 |
. . . . . . . . 9
⊢ ((𝐹:(𝐴 × 𝐶)⟶𝐵 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) → (𝑗𝐹𝑘) ∈ 𝐵) |
| 21 | 19, 20 | syl3an1 1359 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) → (𝑗𝐹𝑘) ∈ 𝐵) |
| 22 | 21 | 3expa 1265 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ 𝐶) → (𝑗𝐹𝑘) ∈ 𝐵) |
| 23 | | eqid 2622 |
. . . . . . 7
⊢ (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) |
| 24 | 22, 23 | fmptd 6385 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)):𝐶⟶𝐵) |
| 25 | | tsmsxp.1 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) |
| 26 | | df-ima 5127 |
. . . . . . . 8
⊢ ((𝑔 ∈ 𝐵 ↦ ((𝐻‘𝑗) − 𝑔)) “ 𝐿) = ran ((𝑔 ∈ 𝐵 ↦ ((𝐻‘𝑗) − 𝑔)) ↾ 𝐿) |
| 27 | 9, 8 | tgptopon 21886 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵)) |
| 28 | 13, 27 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐵)) |
| 29 | | tsmsxp.l |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐿 ∈ 𝐽) |
| 30 | | toponss 20731 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐿 ∈ 𝐽) → 𝐿 ⊆ 𝐵) |
| 31 | 28, 29, 30 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ⊆ 𝐵) |
| 32 | 31 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐿 ⊆ 𝐵) |
| 33 | 32 | resmptd 5452 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝑔 ∈ 𝐵 ↦ ((𝐻‘𝑗) − 𝑔)) ↾ 𝐿) = (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))) |
| 34 | 33 | rneqd 5353 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ran ((𝑔 ∈ 𝐵 ↦ ((𝐻‘𝑗) − 𝑔)) ↾ 𝐿) = ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))) |
| 35 | 26, 34 | syl5eq 2668 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝑔 ∈ 𝐵 ↦ ((𝐻‘𝑗) − 𝑔)) “ 𝐿) = ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))) |
| 36 | | tsmsxp.h |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
| 37 | 36 | ffvelrnda 6359 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ 𝐵) |
| 38 | | tsmsxp.p |
. . . . . . . . . . . . 13
⊢ + =
(+g‘𝐺) |
| 39 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 40 | | tsmsxp.m |
. . . . . . . . . . . . 13
⊢ − =
(-g‘𝐺) |
| 41 | 8, 38, 39, 40 | grpsubval 17465 |
. . . . . . . . . . . 12
⊢ (((𝐻‘𝑗) ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → ((𝐻‘𝑗) − 𝑔) = ((𝐻‘𝑗) +
((invg‘𝐺)‘𝑔))) |
| 42 | 37, 41 | sylan 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → ((𝐻‘𝑗) − 𝑔) = ((𝐻‘𝑗) +
((invg‘𝐺)‘𝑔))) |
| 43 | 42 | mpteq2dva 4744 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝑔 ∈ 𝐵 ↦ ((𝐻‘𝑗) − 𝑔)) = (𝑔 ∈ 𝐵 ↦ ((𝐻‘𝑗) +
((invg‘𝐺)‘𝑔)))) |
| 44 | | tgpgrp 21882 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
| 45 | 13, 44 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 46 | 45 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐺 ∈ Grp) |
| 47 | 8, 39 | grpinvcl 17467 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑔 ∈ 𝐵) → ((invg‘𝐺)‘𝑔) ∈ 𝐵) |
| 48 | 46, 47 | sylan 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → ((invg‘𝐺)‘𝑔) ∈ 𝐵) |
| 49 | 8, 39 | grpinvf 17466 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ Grp →
(invg‘𝐺):𝐵⟶𝐵) |
| 50 | 46, 49 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (invg‘𝐺):𝐵⟶𝐵) |
| 51 | 50 | feqmptd 6249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (invg‘𝐺) = (𝑔 ∈ 𝐵 ↦ ((invg‘𝐺)‘𝑔))) |
| 52 | | eqidd 2623 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝑦 ∈ 𝐵 ↦ ((𝐻‘𝑗) + 𝑦)) = (𝑦 ∈ 𝐵 ↦ ((𝐻‘𝑗) + 𝑦))) |
| 53 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑦 = ((invg‘𝐺)‘𝑔) → ((𝐻‘𝑗) + 𝑦) = ((𝐻‘𝑗) +
((invg‘𝐺)‘𝑔))) |
| 54 | 48, 51, 52, 53 | fmptco 6396 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ↦ ((𝐻‘𝑗) + 𝑦)) ∘ (invg‘𝐺)) = (𝑔 ∈ 𝐵 ↦ ((𝐻‘𝑗) +
((invg‘𝐺)‘𝑔)))) |
| 55 | 43, 54 | eqtr4d 2659 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝑔 ∈ 𝐵 ↦ ((𝐻‘𝑗) − 𝑔)) = ((𝑦 ∈ 𝐵 ↦ ((𝐻‘𝑗) + 𝑦)) ∘ (invg‘𝐺))) |
| 56 | 13 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐺 ∈ TopGrp) |
| 57 | 9, 39 | grpinvhmeo 21890 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ TopGrp →
(invg‘𝐺)
∈ (𝐽Homeo𝐽)) |
| 58 | 56, 57 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (invg‘𝐺) ∈ (𝐽Homeo𝐽)) |
| 59 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐵 ↦ ((𝐻‘𝑗) + 𝑦)) = (𝑦 ∈ 𝐵 ↦ ((𝐻‘𝑗) + 𝑦)) |
| 60 | 59, 8, 38, 9 | tgplacthmeo 21907 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ TopGrp ∧ (𝐻‘𝑗) ∈ 𝐵) → (𝑦 ∈ 𝐵 ↦ ((𝐻‘𝑗) + 𝑦)) ∈ (𝐽Homeo𝐽)) |
| 61 | 56, 37, 60 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝑦 ∈ 𝐵 ↦ ((𝐻‘𝑗) + 𝑦)) ∈ (𝐽Homeo𝐽)) |
| 62 | | hmeoco 21575 |
. . . . . . . . . 10
⊢
(((invg‘𝐺) ∈ (𝐽Homeo𝐽) ∧ (𝑦 ∈ 𝐵 ↦ ((𝐻‘𝑗) + 𝑦)) ∈ (𝐽Homeo𝐽)) → ((𝑦 ∈ 𝐵 ↦ ((𝐻‘𝑗) + 𝑦)) ∘ (invg‘𝐺)) ∈ (𝐽Homeo𝐽)) |
| 63 | 58, 61, 62 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ↦ ((𝐻‘𝑗) + 𝑦)) ∘ (invg‘𝐺)) ∈ (𝐽Homeo𝐽)) |
| 64 | 55, 63 | eqeltrd 2701 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝑔 ∈ 𝐵 ↦ ((𝐻‘𝑗) − 𝑔)) ∈ (𝐽Homeo𝐽)) |
| 65 | 29 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐿 ∈ 𝐽) |
| 66 | | hmeoima 21568 |
. . . . . . . 8
⊢ (((𝑔 ∈ 𝐵 ↦ ((𝐻‘𝑗) − 𝑔)) ∈ (𝐽Homeo𝐽) ∧ 𝐿 ∈ 𝐽) → ((𝑔 ∈ 𝐵 ↦ ((𝐻‘𝑗) − 𝑔)) “ 𝐿) ∈ 𝐽) |
| 67 | 64, 65, 66 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝑔 ∈ 𝐵 ↦ ((𝐻‘𝑗) − 𝑔)) “ 𝐿) ∈ 𝐽) |
| 68 | 35, 67 | eqeltrrd 2702 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)) ∈ 𝐽) |
| 69 | | tsmsxp.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐺) |
| 70 | 8, 69, 40 | grpsubid1 17500 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝐻‘𝑗) ∈ 𝐵) → ((𝐻‘𝑗) − 0 ) = (𝐻‘𝑗)) |
| 71 | 46, 37, 70 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝐻‘𝑗) − 0 ) = (𝐻‘𝑗)) |
| 72 | | tsmsxp.3 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ 𝐿) |
| 73 | 72 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 0 ∈ 𝐿) |
| 74 | | ovex 6678 |
. . . . . . . 8
⊢ ((𝐻‘𝑗) − 0 ) ∈
V |
| 75 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)) = (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)) |
| 76 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑔 = 0 → ((𝐻‘𝑗) − 𝑔) = ((𝐻‘𝑗) − 0 )) |
| 77 | 75, 76 | elrnmpt1s 5373 |
. . . . . . . 8
⊢ (( 0 ∈ 𝐿 ∧ ((𝐻‘𝑗) − 0 ) ∈ V) → ((𝐻‘𝑗) − 0 ) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))) |
| 78 | 73, 74, 77 | sylancl 694 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝐻‘𝑗) − 0 ) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))) |
| 79 | 71, 78 | eqeltrrd 2702 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))) |
| 80 | 8, 9, 10, 12, 16, 18, 24, 25, 68, 79 | tsmsi 21937 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)))) |
| 81 | 7, 80 | syldan 487 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐾) → ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)))) |
| 82 | 81 | ralrimiva 2966 |
. . 3
⊢ (𝜑 → ∀𝑗 ∈ 𝐾 ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)))) |
| 83 | | sseq1 3626 |
. . . . . 6
⊢ (𝑦 = (𝑓‘𝑗) → (𝑦 ⊆ 𝑧 ↔ (𝑓‘𝑗) ⊆ 𝑧)) |
| 84 | 83 | imbi1d 331 |
. . . . 5
⊢ (𝑦 = (𝑓‘𝑗) → ((𝑦 ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))) ↔ ((𝑓‘𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))))) |
| 85 | 84 | ralbidv 2986 |
. . . 4
⊢ (𝑦 = (𝑓‘𝑗) → (∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))) ↔ ∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓‘𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))))) |
| 86 | 85 | ac6sfi 8204 |
. . 3
⊢ ((𝐾 ∈ Fin ∧ ∀𝑗 ∈ 𝐾 ∃𝑦 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)))) → ∃𝑓(𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) ∧ ∀𝑗 ∈ 𝐾 ∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓‘𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))))) |
| 87 | 4, 82, 86 | syl2anc 693 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) ∧ ∀𝑗 ∈ 𝐾 ∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓‘𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))))) |
| 88 | | frn 6053 |
. . . . . . . . 9
⊢ (𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝐶 ∩ Fin)) |
| 89 | 88 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ran 𝑓 ⊆ (𝒫 𝐶 ∩ Fin)) |
| 90 | | inss1 3833 |
. . . . . . . 8
⊢
(𝒫 𝐶 ∩
Fin) ⊆ 𝒫 𝐶 |
| 91 | 89, 90 | syl6ss 3615 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ran 𝑓 ⊆ 𝒫 𝐶) |
| 92 | | sspwuni 4611 |
. . . . . . 7
⊢ (ran
𝑓 ⊆ 𝒫 𝐶 ↔ ∪ ran 𝑓 ⊆ 𝐶) |
| 93 | 91, 92 | sylib 208 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ∪ ran 𝑓 ⊆ 𝐶) |
| 94 | | tsmsxp.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)) |
| 95 | | elfpw 8268 |
. . . . . . . . . 10
⊢ (𝐷 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) ↔ (𝐷 ⊆ (𝐴 × 𝐶) ∧ 𝐷 ∈ Fin)) |
| 96 | 95 | simplbi 476 |
. . . . . . . . 9
⊢ (𝐷 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝐷 ⊆ (𝐴 × 𝐶)) |
| 97 | | rnss 5354 |
. . . . . . . . 9
⊢ (𝐷 ⊆ (𝐴 × 𝐶) → ran 𝐷 ⊆ ran (𝐴 × 𝐶)) |
| 98 | 94, 96, 97 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐷 ⊆ ran (𝐴 × 𝐶)) |
| 99 | | rnxpss 5566 |
. . . . . . . 8
⊢ ran
(𝐴 × 𝐶) ⊆ 𝐶 |
| 100 | 98, 99 | syl6ss 3615 |
. . . . . . 7
⊢ (𝜑 → ran 𝐷 ⊆ 𝐶) |
| 101 | 100 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ran 𝐷 ⊆ 𝐶) |
| 102 | 93, 101 | unssd 3789 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (∪ ran 𝑓 ∪ ran 𝐷) ⊆ 𝐶) |
| 103 | 4 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝐾 ∈ Fin) |
| 104 | | ffn 6045 |
. . . . . . . . . 10
⊢ (𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) → 𝑓 Fn 𝐾) |
| 105 | 104 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝑓 Fn 𝐾) |
| 106 | | dffn4 6121 |
. . . . . . . . 9
⊢ (𝑓 Fn 𝐾 ↔ 𝑓:𝐾–onto→ran 𝑓) |
| 107 | 105, 106 | sylib 208 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝑓:𝐾–onto→ran 𝑓) |
| 108 | | fofi 8252 |
. . . . . . . 8
⊢ ((𝐾 ∈ Fin ∧ 𝑓:𝐾–onto→ran 𝑓) → ran 𝑓 ∈ Fin) |
| 109 | 103, 107,
108 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ran 𝑓 ∈ Fin) |
| 110 | | inss2 3834 |
. . . . . . . 8
⊢
(𝒫 𝐶 ∩
Fin) ⊆ Fin |
| 111 | 89, 110 | syl6ss 3615 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ran 𝑓 ⊆ Fin) |
| 112 | | unifi 8255 |
. . . . . . 7
⊢ ((ran
𝑓 ∈ Fin ∧ ran
𝑓 ⊆ Fin) → ∪ ran 𝑓 ∈ Fin) |
| 113 | 109, 111,
112 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ∪ ran 𝑓 ∈ Fin) |
| 114 | 95 | simprbi 480 |
. . . . . . . 8
⊢ (𝐷 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin) → 𝐷 ∈ Fin) |
| 115 | | rnfi 8249 |
. . . . . . . 8
⊢ (𝐷 ∈ Fin → ran 𝐷 ∈ Fin) |
| 116 | 94, 114, 115 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ran 𝐷 ∈ Fin) |
| 117 | 116 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ran 𝐷 ∈ Fin) |
| 118 | | unfi 8227 |
. . . . . 6
⊢ ((∪ ran 𝑓 ∈ Fin ∧ ran 𝐷 ∈ Fin) → (∪ ran 𝑓 ∪ ran 𝐷) ∈ Fin) |
| 119 | 113, 117,
118 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (∪ ran 𝑓 ∪ ran 𝐷) ∈ Fin) |
| 120 | | elfpw 8268 |
. . . . 5
⊢ ((∪ ran 𝑓 ∪ ran 𝐷) ∈ (𝒫 𝐶 ∩ Fin) ↔ ((∪ ran 𝑓 ∪ ran 𝐷) ⊆ 𝐶 ∧ (∪ ran
𝑓 ∪ ran 𝐷) ∈ Fin)) |
| 121 | 102, 119,
120 | sylanbrc 698 |
. . . 4
⊢ ((𝜑 ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (∪ ran 𝑓 ∪ ran 𝐷) ∈ (𝒫 𝐶 ∩ Fin)) |
| 122 | 121 | adantrr 753 |
. . 3
⊢ ((𝜑 ∧ (𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) ∧ ∀𝑗 ∈ 𝐾 ∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓‘𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))))) → (∪
ran 𝑓 ∪ ran 𝐷) ∈ (𝒫 𝐶 ∩ Fin)) |
| 123 | | ssun2 3777 |
. . . 4
⊢ ran 𝐷 ⊆ (∪ ran 𝑓 ∪ ran 𝐷) |
| 124 | 123 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ (𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) ∧ ∀𝑗 ∈ 𝐾 ∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓‘𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))))) → ran 𝐷 ⊆ (∪ ran
𝑓 ∪ ran 𝐷)) |
| 125 | 121 | adantlr 751 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (∪ ran 𝑓 ∪ ran 𝐷) ∈ (𝒫 𝐶 ∩ Fin)) |
| 126 | | fvssunirn 6217 |
. . . . . . . . . . . . . 14
⊢ (𝑓‘𝑗) ⊆ ∪ ran
𝑓 |
| 127 | | ssun1 3776 |
. . . . . . . . . . . . . 14
⊢ ∪ ran 𝑓 ⊆ (∪ ran
𝑓 ∪ ran 𝐷) |
| 128 | 126, 127 | sstri 3612 |
. . . . . . . . . . . . 13
⊢ (𝑓‘𝑗) ⊆ (∪ ran
𝑓 ∪ ran 𝐷) |
| 129 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (∪
ran 𝑓 ∪ ran 𝐷) → 𝑧 = (∪ ran 𝑓 ∪ ran 𝐷)) |
| 130 | 128, 129 | syl5sseqr 3654 |
. . . . . . . . . . . 12
⊢ (𝑧 = (∪
ran 𝑓 ∪ ran 𝐷) → (𝑓‘𝑗) ⊆ 𝑧) |
| 131 | | pm5.5 351 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑗) ⊆ 𝑧 → (((𝑓‘𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))) ↔ (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)))) |
| 132 | 130, 131 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑧 = (∪
ran 𝑓 ∪ ran 𝐷) → (((𝑓‘𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))) ↔ (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)))) |
| 133 | | reseq2 5391 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (∪
ran 𝑓 ∪ ran 𝐷) → ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧) = ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ (∪ ran
𝑓 ∪ ran 𝐷))) |
| 134 | 133 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑧 = (∪
ran 𝑓 ∪ ran 𝐷) → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) = (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ (∪ ran
𝑓 ∪ ran 𝐷)))) |
| 135 | 134 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ (𝑧 = (∪
ran 𝑓 ∪ ran 𝐷) → ((𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)) ↔ (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ (∪ ran
𝑓 ∪ ran 𝐷))) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)))) |
| 136 | 132, 135 | bitrd 268 |
. . . . . . . . . 10
⊢ (𝑧 = (∪
ran 𝑓 ∪ ran 𝐷) → (((𝑓‘𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))) ↔ (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ (∪ ran
𝑓 ∪ ran 𝐷))) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)))) |
| 137 | 136 | rspcv 3305 |
. . . . . . . . 9
⊢ ((∪ ran 𝑓 ∪ ran 𝐷) ∈ (𝒫 𝐶 ∩ Fin) → (∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓‘𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))) → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ (∪ ran
𝑓 ∪ ran 𝐷))) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)))) |
| 138 | 125, 137 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓‘𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))) → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ (∪ ran
𝑓 ∪ ran 𝐷))) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)))) |
| 139 | 11 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝐺 ∈ CMnd) |
| 140 | | cmnmnd 18208 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| 141 | 139, 140 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝐺 ∈ Mnd) |
| 142 | | simplr 792 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝑗 ∈ 𝐾) |
| 143 | 119 | adantlr 751 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (∪ ran 𝑓 ∪ ran 𝐷) ∈ Fin) |
| 144 | 102 | adantlr 751 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (∪ ran 𝑓 ∪ ran 𝐷) ⊆ 𝐶) |
| 145 | 144 | sselda 3603 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (∪ ran
𝑓 ∪ ran 𝐷)) → 𝑘 ∈ 𝐶) |
| 146 | 19 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐾) → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
| 147 | 146, 7 | jca 554 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐾) → (𝐹:(𝐴 × 𝐶)⟶𝐵 ∧ 𝑗 ∈ 𝐴)) |
| 148 | 20 | 3expa 1265 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹:(𝐴 × 𝐶)⟶𝐵 ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ 𝐶) → (𝑗𝐹𝑘) ∈ 𝐵) |
| 149 | 147, 148 | sylan 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑘 ∈ 𝐶) → (𝑗𝐹𝑘) ∈ 𝐵) |
| 150 | 149 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ 𝐶) → (𝑗𝐹𝑘) ∈ 𝐵) |
| 151 | 145, 150 | syldan 487 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (∪ ran
𝑓 ∪ ran 𝐷)) → (𝑗𝐹𝑘) ∈ 𝐵) |
| 152 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (∪ ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ (∪ ran
𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘)) |
| 153 | 151, 152 | fmptd 6385 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝑘 ∈ (∪ ran
𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘)):(∪ ran 𝑓 ∪ ran 𝐷)⟶𝐵) |
| 154 | | ovexd 6680 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (∪ ran
𝑓 ∪ ran 𝐷)) → (𝑗𝐹𝑘) ∈ V) |
| 155 | | fvex 6201 |
. . . . . . . . . . . . . . . 16
⊢
(0g‘𝐺) ∈ V |
| 156 | 69, 155 | eqeltri 2697 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
V |
| 157 | 156 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 0 ∈ V) |
| 158 | 152, 143,
154, 157 | fsuppmptdm 8286 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝑘 ∈ (∪ ran
𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘)) finSupp 0 ) |
| 159 | 8, 69, 139, 143, 153, 158 | gsumcl 18316 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝑘 ∈ (∪ ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) |
| 160 | | velsn 4193 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ {𝑗} ↔ 𝑦 = 𝑗) |
| 161 | | ovres 6800 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ {𝑗} ∧ 𝑘 ∈ (∪ ran
𝑓 ∪ ran 𝐷)) → (𝑦(𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)))𝑘) = (𝑦𝐹𝑘)) |
| 162 | 160, 161 | sylanbr 490 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 = 𝑗 ∧ 𝑘 ∈ (∪ ran
𝑓 ∪ ran 𝐷)) → (𝑦(𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)))𝑘) = (𝑦𝐹𝑘)) |
| 163 | | oveq1 6657 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑗 → (𝑦𝐹𝑘) = (𝑗𝐹𝑘)) |
| 164 | 163 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 = 𝑗 ∧ 𝑘 ∈ (∪ ran
𝑓 ∪ ran 𝐷)) → (𝑦𝐹𝑘) = (𝑗𝐹𝑘)) |
| 165 | 162, 164 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 = 𝑗 ∧ 𝑘 ∈ (∪ ran
𝑓 ∪ ran 𝐷)) → (𝑦(𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)))𝑘) = (𝑗𝐹𝑘)) |
| 166 | 165 | mpteq2dva 4744 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑗 → (𝑘 ∈ (∪ ran
𝑓 ∪ ran 𝐷) ↦ (𝑦(𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)))𝑘)) = (𝑘 ∈ (∪ ran
𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘))) |
| 167 | 166 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑗 → (𝐺 Σg (𝑘 ∈ (∪ ran 𝑓 ∪ ran 𝐷) ↦ (𝑦(𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)))𝑘))) = (𝐺 Σg (𝑘 ∈ (∪ ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘)))) |
| 168 | 8, 167 | gsumsn 18354 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Mnd ∧ 𝑗 ∈ 𝐾 ∧ (𝐺 Σg (𝑘 ∈ (∪ ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) → (𝐺 Σg (𝑦 ∈ {𝑗} ↦ (𝐺 Σg (𝑘 ∈ (∪ ran 𝑓 ∪ ran 𝐷) ↦ (𝑦(𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)))𝑘))))) = (𝐺 Σg (𝑘 ∈ (∪ ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘)))) |
| 169 | 141, 142,
159, 168 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝑦 ∈ {𝑗} ↦ (𝐺 Σg (𝑘 ∈ (∪ ran 𝑓 ∪ ran 𝐷) ↦ (𝑦(𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)))𝑘))))) = (𝐺 Σg (𝑘 ∈ (∪ ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘)))) |
| 170 | | snfi 8038 |
. . . . . . . . . . . . 13
⊢ {𝑗} ∈ Fin |
| 171 | 170 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → {𝑗} ∈ Fin) |
| 172 | 19 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
| 173 | 7 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝑗 ∈ 𝐴) |
| 174 | 173 | snssd 4340 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → {𝑗} ⊆ 𝐴) |
| 175 | | xpss12 5225 |
. . . . . . . . . . . . . 14
⊢ (({𝑗} ⊆ 𝐴 ∧ (∪ ran
𝑓 ∪ ran 𝐷) ⊆ 𝐶) → ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)) ⊆ (𝐴 × 𝐶)) |
| 176 | 174, 144,
175 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)) ⊆ (𝐴 × 𝐶)) |
| 177 | 172, 176 | fssresd 6071 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))):({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))⟶𝐵) |
| 178 | | xpfi 8231 |
. . . . . . . . . . . . . 14
⊢ (({𝑗} ∈ Fin ∧ (∪ ran 𝑓 ∪ ran 𝐷) ∈ Fin) → ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)) ∈ Fin) |
| 179 | 170, 143,
178 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)) ∈ Fin) |
| 180 | 177, 179,
157 | fdmfifsupp 8285 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))) finSupp 0 ) |
| 181 | 8, 69, 139, 171, 143, 177, 180 | gsumxp 18375 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)))) = (𝐺 Σg (𝑦 ∈ {𝑗} ↦ (𝐺 Σg (𝑘 ∈ (∪ ran 𝑓 ∪ ran 𝐷) ↦ (𝑦(𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)))𝑘)))))) |
| 182 | 144 | resmptd 5452 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ (∪ ran
𝑓 ∪ ran 𝐷)) = (𝑘 ∈ (∪ ran
𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘))) |
| 183 | 182 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ (∪ ran
𝑓 ∪ ran 𝐷))) = (𝐺 Σg (𝑘 ∈ (∪ ran 𝑓 ∪ ran 𝐷) ↦ (𝑗𝐹𝑘)))) |
| 184 | 169, 181,
183 | 3eqtr4rd 2667 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ (∪ ran
𝑓 ∪ ran 𝐷))) = (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))))) |
| 185 | 184 | eleq1d 2686 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ((𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ (∪ ran
𝑓 ∪ ran 𝐷))) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)) ↔ (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)))) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)))) |
| 186 | | ovex 6678 |
. . . . . . . . . . 11
⊢ ((𝐻‘𝑗) − 𝑔) ∈ V |
| 187 | 75, 186 | elrnmpti 5376 |
. . . . . . . . . 10
⊢ ((𝐺 Σg
(𝐹 ↾ ({𝑗} × (∪ ran 𝑓 ∪ ran 𝐷)))) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)) ↔ ∃𝑔 ∈ 𝐿 (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)))) = ((𝐻‘𝑗) − 𝑔)) |
| 188 | | isabl 18197 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
| 189 | 45, 11, 188 | sylanbrc 698 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 ∈ Abel) |
| 190 | 189 | ad3antrrr 766 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑔 ∈ 𝐿) → 𝐺 ∈ Abel) |
| 191 | 7, 37 | syldan 487 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐾) → (𝐻‘𝑗) ∈ 𝐵) |
| 192 | 191 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑔 ∈ 𝐿) → (𝐻‘𝑗) ∈ 𝐵) |
| 193 | 31 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → 𝐿 ⊆ 𝐵) |
| 194 | 193 | sselda 3603 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑔 ∈ 𝐿) → 𝑔 ∈ 𝐵) |
| 195 | 8, 40, 190, 192, 194 | ablnncan 18226 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑔 ∈ 𝐿) → ((𝐻‘𝑗) − ((𝐻‘𝑗) − 𝑔)) = 𝑔) |
| 196 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑔 ∈ 𝐿) → 𝑔 ∈ 𝐿) |
| 197 | 195, 196 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑔 ∈ 𝐿) → ((𝐻‘𝑗) − ((𝐻‘𝑗) − 𝑔)) ∈ 𝐿) |
| 198 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ ((𝐺 Σg
(𝐹 ↾ ({𝑗} × (∪ ran 𝑓 ∪ ran 𝐷)))) = ((𝐻‘𝑗) − 𝑔) → ((𝐻‘𝑗) − (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))))) = ((𝐻‘𝑗) − ((𝐻‘𝑗) − 𝑔))) |
| 199 | 198 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ ((𝐺 Σg
(𝐹 ↾ ({𝑗} × (∪ ran 𝑓 ∪ ran 𝐷)))) = ((𝐻‘𝑗) − 𝑔) → (((𝐻‘𝑗) − (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿 ↔ ((𝐻‘𝑗) − ((𝐻‘𝑗) − 𝑔)) ∈ 𝐿)) |
| 200 | 197, 199 | syl5ibrcom 237 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑔 ∈ 𝐿) → ((𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)))) = ((𝐻‘𝑗) − 𝑔) → ((𝐻‘𝑗) − (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿)) |
| 201 | 200 | rexlimdva 3031 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (∃𝑔 ∈ 𝐿 (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)))) = ((𝐻‘𝑗) − 𝑔) → ((𝐻‘𝑗) − (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿)) |
| 202 | 187, 201 | syl5bi 232 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)))) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)) → ((𝐻‘𝑗) − (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿)) |
| 203 | 185, 202 | sylbid 230 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → ((𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ (∪ ran
𝑓 ∪ ran 𝐷))) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔)) → ((𝐻‘𝑗) − (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿)) |
| 204 | 138, 203 | syld 47 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐾) ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓‘𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))) → ((𝐻‘𝑗) − (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿)) |
| 205 | 204 | an32s 846 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) ∧ 𝑗 ∈ 𝐾) → (∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓‘𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))) → ((𝐻‘𝑗) − (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿)) |
| 206 | 205 | ralimdva 2962 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin)) → (∀𝑗 ∈ 𝐾 ∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓‘𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))) → ∀𝑗 ∈ 𝐾 ((𝐻‘𝑗) − (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿)) |
| 207 | 206 | impr 649 |
. . . 4
⊢ ((𝜑 ∧ (𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) ∧ ∀𝑗 ∈ 𝐾 ∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓‘𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))))) → ∀𝑗 ∈ 𝐾 ((𝐻‘𝑗) − (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿) |
| 208 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑗 = 𝑥 → (𝐻‘𝑗) = (𝐻‘𝑥)) |
| 209 | | sneq 4187 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑥 → {𝑗} = {𝑥}) |
| 210 | 209 | xpeq1d 5138 |
. . . . . . . . 9
⊢ (𝑗 = 𝑥 → ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)) = ({𝑥} × (∪ ran
𝑓 ∪ ran 𝐷))) |
| 211 | 210 | reseq2d 5396 |
. . . . . . . 8
⊢ (𝑗 = 𝑥 → (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))) = (𝐹 ↾ ({𝑥} × (∪ ran
𝑓 ∪ ran 𝐷)))) |
| 212 | 211 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑗 = 𝑥 → (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷)))) = (𝐺 Σg (𝐹 ↾ ({𝑥} × (∪ ran
𝑓 ∪ ran 𝐷))))) |
| 213 | 208, 212 | oveq12d 6668 |
. . . . . 6
⊢ (𝑗 = 𝑥 → ((𝐻‘𝑗) − (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))))) = ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × (∪ ran
𝑓 ∪ ran 𝐷)))))) |
| 214 | 213 | eleq1d 2686 |
. . . . 5
⊢ (𝑗 = 𝑥 → (((𝐻‘𝑗) − (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿 ↔ ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿)) |
| 215 | 214 | cbvralv 3171 |
. . . 4
⊢
(∀𝑗 ∈
𝐾 ((𝐻‘𝑗) − (𝐺 Σg (𝐹 ↾ ({𝑗} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿 ↔ ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿) |
| 216 | 207, 215 | sylib 208 |
. . 3
⊢ ((𝜑 ∧ (𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) ∧ ∀𝑗 ∈ 𝐾 ∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓‘𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))))) → ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿) |
| 217 | | sseq2 3627 |
. . . . 5
⊢ (𝑛 = (∪
ran 𝑓 ∪ ran 𝐷) → (ran 𝐷 ⊆ 𝑛 ↔ ran 𝐷 ⊆ (∪ ran
𝑓 ∪ ran 𝐷))) |
| 218 | | xpeq2 5129 |
. . . . . . . . . 10
⊢ (𝑛 = (∪
ran 𝑓 ∪ ran 𝐷) → ({𝑥} × 𝑛) = ({𝑥} × (∪ ran
𝑓 ∪ ran 𝐷))) |
| 219 | 218 | reseq2d 5396 |
. . . . . . . . 9
⊢ (𝑛 = (∪
ran 𝑓 ∪ ran 𝐷) → (𝐹 ↾ ({𝑥} × 𝑛)) = (𝐹 ↾ ({𝑥} × (∪ ran
𝑓 ∪ ran 𝐷)))) |
| 220 | 219 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑛 = (∪
ran 𝑓 ∪ ran 𝐷) → (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛))) = (𝐺 Σg (𝐹 ↾ ({𝑥} × (∪ ran
𝑓 ∪ ran 𝐷))))) |
| 221 | 220 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑛 = (∪
ran 𝑓 ∪ ran 𝐷) → ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) = ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × (∪ ran
𝑓 ∪ ran 𝐷)))))) |
| 222 | 221 | eleq1d 2686 |
. . . . . 6
⊢ (𝑛 = (∪
ran 𝑓 ∪ ran 𝐷) → (((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿 ↔ ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿)) |
| 223 | 222 | ralbidv 2986 |
. . . . 5
⊢ (𝑛 = (∪
ran 𝑓 ∪ ran 𝐷) → (∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿 ↔ ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿)) |
| 224 | 217, 223 | anbi12d 747 |
. . . 4
⊢ (𝑛 = (∪
ran 𝑓 ∪ ran 𝐷) → ((ran 𝐷 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿) ↔ (ran 𝐷 ⊆ (∪ ran
𝑓 ∪ ran 𝐷) ∧ ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿))) |
| 225 | 224 | rspcev 3309 |
. . 3
⊢ (((∪ ran 𝑓 ∪ ran 𝐷) ∈ (𝒫 𝐶 ∩ Fin) ∧ (ran 𝐷 ⊆ (∪ ran
𝑓 ∪ ran 𝐷) ∧ ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × (∪ ran
𝑓 ∪ ran 𝐷))))) ∈ 𝐿)) → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝐷 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿)) |
| 226 | 122, 124,
216, 225 | syl12anc 1324 |
. 2
⊢ ((𝜑 ∧ (𝑓:𝐾⟶(𝒫 𝐶 ∩ Fin) ∧ ∀𝑗 ∈ 𝐾 ∀𝑧 ∈ (𝒫 𝐶 ∩ Fin)((𝑓‘𝑗) ⊆ 𝑧 → (𝐺 Σg ((𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)) ↾ 𝑧)) ∈ ran (𝑔 ∈ 𝐿 ↦ ((𝐻‘𝑗) − 𝑔))))) → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝐷 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿)) |
| 227 | 87, 226 | exlimddv 1863 |
1
⊢ (𝜑 → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝐷 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿)) |