![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij1lem11 | Structured version Visualization version GIF version |
Description: Lemma for ackbij1 9060. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
Ref | Expression |
---|---|
ackbij1lem11 | ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (𝒫 ω ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 3833 | . . . . . . 7 ⊢ (𝒫 ω ∩ Fin) ⊆ 𝒫 ω | |
2 | 1 | sseli 3599 | . . . . . 6 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω) |
3 | 2 | elpwid 4170 | . . . . 5 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ⊆ ω) |
4 | sstr 3611 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ω) → 𝐵 ⊆ ω) | |
5 | 3, 4 | sylan2 491 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ⊆ ω) |
6 | ssexg 4804 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ∈ V) | |
7 | elpwg 4166 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝒫 ω ↔ 𝐵 ⊆ ω)) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) → (𝐵 ∈ 𝒫 ω ↔ 𝐵 ⊆ ω)) |
9 | 5, 8 | mpbird 247 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ∈ 𝒫 ω) |
10 | 9 | ancoms 469 | . 2 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝒫 ω) |
11 | inss2 3834 | . . . 4 ⊢ (𝒫 ω ∩ Fin) ⊆ Fin | |
12 | 11 | sseli 3599 | . . 3 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin) |
13 | ssfi 8180 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
14 | 12, 13 | sylan 488 | . 2 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
15 | 10, 14 | elind 3798 | 1 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (𝒫 ω ∩ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 𝒫 cpw 4158 {csn 4177 ∪ ciun 4520 ↦ cmpt 4729 × cxp 5112 ‘cfv 5888 ωcom 7065 Fincfn 7955 cardccrd 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-om 7066 df-er 7742 df-en 7956 df-fin 7959 |
This theorem is referenced by: ackbij1lem12 9053 ackbij1lem15 9056 ackbij1lem16 9057 ackbij1lem18 9059 |
Copyright terms: Public domain | W3C validator |