![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephsucpw | Structured version Visualization version GIF version |
Description: The power set of an aleph dominates the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 9498 or gchaleph2 9494.) (Contributed by NM, 27-Aug-2005.) |
Ref | Expression |
---|---|
alephsucpw | ⊢ (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephsucpw2 8934 | . 2 ⊢ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) | |
2 | fvex 6201 | . . 3 ⊢ (ℵ‘suc 𝐴) ∈ V | |
3 | fvex 6201 | . . . 4 ⊢ (ℵ‘𝐴) ∈ V | |
4 | 3 | pwex 4848 | . . 3 ⊢ 𝒫 (ℵ‘𝐴) ∈ V |
5 | domtri 9378 | . . 3 ⊢ (((ℵ‘suc 𝐴) ∈ V ∧ 𝒫 (ℵ‘𝐴) ∈ V) → ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))) | |
6 | 2, 4, 5 | mp2an 708 | . 2 ⊢ ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) |
7 | 1, 6 | mpbir 221 | 1 ⊢ (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∈ wcel 1990 Vcvv 3200 𝒫 cpw 4158 class class class wbr 4653 suc csuc 5725 ‘cfv 5888 ≼ cdom 7953 ≺ csdm 7954 ℵcale 8762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-ac2 9285 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-oi 8415 df-har 8463 df-card 8765 df-aleph 8766 df-ac 8939 |
This theorem is referenced by: aleph1 9393 |
Copyright terms: Public domain | W3C validator |