MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwhoma Structured version   Visualization version   Unicode version

Theorem arwhoma 16695
Description: An arrow is contained in the hom-set corresponding to its domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a  |-  A  =  (Nat `  C )
arwhoma.h  |-  H  =  (Homa
`  C )
Assertion
Ref Expression
arwhoma  |-  ( F  e.  A  ->  F  e.  ( (domA `  F ) H (coda `  F ) ) )

Proof of Theorem arwhoma
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 arwrcl.a . . . . . . 7  |-  A  =  (Nat `  C )
2 arwhoma.h . . . . . . 7  |-  H  =  (Homa
`  C )
31, 2arwval 16693 . . . . . 6  |-  A  = 
U. ran  H
43eleq2i 2693 . . . . 5  |-  ( F  e.  A  <->  F  e.  U.
ran  H )
54biimpi 206 . . . 4  |-  ( F  e.  A  ->  F  e.  U. ran  H )
6 eqid 2622 . . . . . 6  |-  ( Base `  C )  =  (
Base `  C )
71arwrcl 16694 . . . . . 6  |-  ( F  e.  A  ->  C  e.  Cat )
82, 6, 7homaf 16680 . . . . 5  |-  ( F  e.  A  ->  H : ( ( Base `  C )  X.  ( Base `  C ) ) --> ~P ( ( (
Base `  C )  X.  ( Base `  C
) )  X.  _V ) )
9 ffn 6045 . . . . 5  |-  ( H : ( ( Base `  C )  X.  ( Base `  C ) ) --> ~P ( ( (
Base `  C )  X.  ( Base `  C
) )  X.  _V )  ->  H  Fn  (
( Base `  C )  X.  ( Base `  C
) ) )
10 fnunirn 6511 . . . . 5  |-  ( H  Fn  ( ( Base `  C )  X.  ( Base `  C ) )  ->  ( F  e. 
U. ran  H  <->  E. z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) F  e.  ( H `  z ) ) )
118, 9, 103syl 18 . . . 4  |-  ( F  e.  A  ->  ( F  e.  U. ran  H  <->  E. z  e.  ( (
Base `  C )  X.  ( Base `  C
) ) F  e.  ( H `  z
) ) )
125, 11mpbid 222 . . 3  |-  ( F  e.  A  ->  E. z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) F  e.  ( H `  z ) )
13 fveq2 6191 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( H `  z )  =  ( H `  <. x ,  y >. )
)
14 df-ov 6653 . . . . . 6  |-  ( x H y )  =  ( H `  <. x ,  y >. )
1513, 14syl6eqr 2674 . . . . 5  |-  ( z  =  <. x ,  y
>.  ->  ( H `  z )  =  ( x H y ) )
1615eleq2d 2687 . . . 4  |-  ( z  =  <. x ,  y
>.  ->  ( F  e.  ( H `  z
)  <->  F  e.  (
x H y ) ) )
1716rexxp 5264 . . 3  |-  ( E. z  e.  ( (
Base `  C )  X.  ( Base `  C
) ) F  e.  ( H `  z
)  <->  E. x  e.  (
Base `  C ) E. y  e.  ( Base `  C ) F  e.  ( x H y ) )
1812, 17sylib 208 . 2  |-  ( F  e.  A  ->  E. x  e.  ( Base `  C
) E. y  e.  ( Base `  C
) F  e.  ( x H y ) )
19 id 22 . . . . 5  |-  ( F  e.  ( x H y )  ->  F  e.  ( x H y ) )
202homadm 16690 . . . . . 6  |-  ( F  e.  ( x H y )  ->  (domA `  F )  =  x )
212homacd 16691 . . . . . 6  |-  ( F  e.  ( x H y )  ->  (coda `  F
)  =  y )
2220, 21oveq12d 6668 . . . . 5  |-  ( F  e.  ( x H y )  ->  (
(domA `  F ) H (coda `  F ) )  =  ( x H y ) )
2319, 22eleqtrrd 2704 . . . 4  |-  ( F  e.  ( x H y )  ->  F  e.  ( (domA `  F ) H (coda `  F ) ) )
2423rexlimivw 3029 . . 3  |-  ( E. y  e.  ( Base `  C ) F  e.  ( x H y )  ->  F  e.  ( (domA `  F ) H (coda `  F ) ) )
2524rexlimivw 3029 . 2  |-  ( E. x  e.  ( Base `  C ) E. y  e.  ( Base `  C
) F  e.  ( x H y )  ->  F  e.  ( (domA `  F ) H (coda `  F ) ) )
2618, 25syl 17 1  |-  ( F  e.  A  ->  F  e.  ( (domA `  F ) H (coda `  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200   ~Pcpw 4158   <.cop 4183   U.cuni 4436    X. cxp 5112   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857  domAcdoma 16670  codaccoda 16671  Natcarw 16672  Homachoma 16673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-1st 7168  df-2nd 7169  df-doma 16674  df-coda 16675  df-homa 16676  df-arw 16677
This theorem is referenced by:  arwdm  16697  arwcd  16698  arwhom  16701  arwdmcd  16702  coapm  16721
  Copyright terms: Public domain W3C validator