MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclfval Structured version   Visualization version   GIF version

Theorem asclfval 19334
Description: Function value of the algebraic scalars function. (Contributed by Mario Carneiro, 8-Mar-2015.)
Hypotheses
Ref Expression
asclfval.a 𝐴 = (algSc‘𝑊)
asclfval.f 𝐹 = (Scalar‘𝑊)
asclfval.k 𝐾 = (Base‘𝐹)
asclfval.s · = ( ·𝑠𝑊)
asclfval.o 1 = (1r𝑊)
Assertion
Ref Expression
asclfval 𝐴 = (𝑥𝐾 ↦ (𝑥 · 1 ))
Distinct variable groups:   𝑥,𝐾   𝑥, 1   𝑥, ·   𝑥,𝑊
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem asclfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 asclfval.a . 2 𝐴 = (algSc‘𝑊)
2 fveq2 6191 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
3 asclfval.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
42, 3syl6eqr 2674 . . . . . . 7 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
54fveq2d 6195 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
6 asclfval.k . . . . . 6 𝐾 = (Base‘𝐹)
75, 6syl6eqr 2674 . . . . 5 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
8 fveq2 6191 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
9 asclfval.s . . . . . . 7 · = ( ·𝑠𝑊)
108, 9syl6eqr 2674 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
11 eqidd 2623 . . . . . 6 (𝑤 = 𝑊𝑥 = 𝑥)
12 fveq2 6191 . . . . . . 7 (𝑤 = 𝑊 → (1r𝑤) = (1r𝑊))
13 asclfval.o . . . . . . 7 1 = (1r𝑊)
1412, 13syl6eqr 2674 . . . . . 6 (𝑤 = 𝑊 → (1r𝑤) = 1 )
1510, 11, 14oveq123d 6671 . . . . 5 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)(1r𝑤)) = (𝑥 · 1 ))
167, 15mpteq12dv 4733 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠𝑤)(1r𝑤))) = (𝑥𝐾 ↦ (𝑥 · 1 )))
17 df-ascl 19314 . . . 4 algSc = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠𝑤)(1r𝑤))))
183fveq2i 6194 . . . . . . 7 (Base‘𝐹) = (Base‘(Scalar‘𝑊))
196, 18eqtri 2644 . . . . . 6 𝐾 = (Base‘(Scalar‘𝑊))
20 fvex 6201 . . . . . 6 (Base‘(Scalar‘𝑊)) ∈ V
2119, 20eqeltri 2697 . . . . 5 𝐾 ∈ V
2221mptex 6486 . . . 4 (𝑥𝐾 ↦ (𝑥 · 1 )) ∈ V
2316, 17, 22fvmpt 6282 . . 3 (𝑊 ∈ V → (algSc‘𝑊) = (𝑥𝐾 ↦ (𝑥 · 1 )))
24 fvprc 6185 . . . . 5 𝑊 ∈ V → (algSc‘𝑊) = ∅)
25 mpt0 6021 . . . . 5 (𝑥 ∈ ∅ ↦ (𝑥 · 1 )) = ∅
2624, 25syl6eqr 2674 . . . 4 𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 )))
27 fvprc 6185 . . . . . . . . 9 𝑊 ∈ V → (Scalar‘𝑊) = ∅)
283, 27syl5eq 2668 . . . . . . . 8 𝑊 ∈ V → 𝐹 = ∅)
2928fveq2d 6195 . . . . . . 7 𝑊 ∈ V → (Base‘𝐹) = (Base‘∅))
30 base0 15912 . . . . . . 7 ∅ = (Base‘∅)
3129, 30syl6eqr 2674 . . . . . 6 𝑊 ∈ V → (Base‘𝐹) = ∅)
326, 31syl5eq 2668 . . . . 5 𝑊 ∈ V → 𝐾 = ∅)
3332mpteq1d 4738 . . . 4 𝑊 ∈ V → (𝑥𝐾 ↦ (𝑥 · 1 )) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 )))
3426, 33eqtr4d 2659 . . 3 𝑊 ∈ V → (algSc‘𝑊) = (𝑥𝐾 ↦ (𝑥 · 1 )))
3523, 34pm2.61i 176 . 2 (algSc‘𝑊) = (𝑥𝐾 ↦ (𝑥 · 1 ))
361, 35eqtri 2644 1 𝐴 = (𝑥𝐾 ↦ (𝑥 · 1 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  cmpt 4729  cfv 5888  (class class class)co 6650  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  1rcur 18501  algSccascl 19311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-slot 15861  df-base 15863  df-ascl 19314
This theorem is referenced by:  asclval  19335  asclfn  19336  asclf  19337  rnascl  19343  ressascl  19344  asclpropd  19346
  Copyright terms: Public domain W3C validator