| Step | Hyp | Ref
| Expression |
| 1 | | asclfval.a |
. 2
⊢ 𝐴 = (algSc‘𝑊) |
| 2 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) |
| 3 | | asclfval.f |
. . . . . . . 8
⊢ 𝐹 = (Scalar‘𝑊) |
| 4 | 2, 3 | syl6eqr 2674 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) |
| 5 | 4 | fveq2d 6195 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹)) |
| 6 | | asclfval.k |
. . . . . 6
⊢ 𝐾 = (Base‘𝐹) |
| 7 | 5, 6 | syl6eqr 2674 |
. . . . 5
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾) |
| 8 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = ( ·𝑠
‘𝑊)) |
| 9 | | asclfval.s |
. . . . . . 7
⊢ · = (
·𝑠 ‘𝑊) |
| 10 | 8, 9 | syl6eqr 2674 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = · ) |
| 11 | | eqidd 2623 |
. . . . . 6
⊢ (𝑤 = 𝑊 → 𝑥 = 𝑥) |
| 12 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (1r‘𝑤) = (1r‘𝑊)) |
| 13 | | asclfval.o |
. . . . . . 7
⊢ 1 =
(1r‘𝑊) |
| 14 | 12, 13 | syl6eqr 2674 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (1r‘𝑤) = 1 ) |
| 15 | 10, 11, 14 | oveq123d 6671 |
. . . . 5
⊢ (𝑤 = 𝑊 → (𝑥( ·𝑠
‘𝑤)(1r‘𝑤)) = (𝑥 · 1 )) |
| 16 | 7, 15 | mpteq12dv 4733 |
. . . 4
⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠
‘𝑤)(1r‘𝑤))) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
| 17 | | df-ascl 19314 |
. . . 4
⊢ algSc =
(𝑤 ∈ V ↦ (𝑥 ∈
(Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠
‘𝑤)(1r‘𝑤)))) |
| 18 | 3 | fveq2i 6194 |
. . . . . . 7
⊢
(Base‘𝐹) =
(Base‘(Scalar‘𝑊)) |
| 19 | 6, 18 | eqtri 2644 |
. . . . . 6
⊢ 𝐾 =
(Base‘(Scalar‘𝑊)) |
| 20 | | fvex 6201 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑊)) ∈ V |
| 21 | 19, 20 | eqeltri 2697 |
. . . . 5
⊢ 𝐾 ∈ V |
| 22 | 21 | mptex 6486 |
. . . 4
⊢ (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) ∈
V |
| 23 | 16, 17, 22 | fvmpt 6282 |
. . 3
⊢ (𝑊 ∈ V →
(algSc‘𝑊) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
| 24 | | fvprc 6185 |
. . . . 5
⊢ (¬
𝑊 ∈ V →
(algSc‘𝑊) =
∅) |
| 25 | | mpt0 6021 |
. . . . 5
⊢ (𝑥 ∈ ∅ ↦ (𝑥 · 1 )) =
∅ |
| 26 | 24, 25 | syl6eqr 2674 |
. . . 4
⊢ (¬
𝑊 ∈ V →
(algSc‘𝑊) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 ))) |
| 27 | | fvprc 6185 |
. . . . . . . . 9
⊢ (¬
𝑊 ∈ V →
(Scalar‘𝑊) =
∅) |
| 28 | 3, 27 | syl5eq 2668 |
. . . . . . . 8
⊢ (¬
𝑊 ∈ V → 𝐹 = ∅) |
| 29 | 28 | fveq2d 6195 |
. . . . . . 7
⊢ (¬
𝑊 ∈ V →
(Base‘𝐹) =
(Base‘∅)) |
| 30 | | base0 15912 |
. . . . . . 7
⊢ ∅ =
(Base‘∅) |
| 31 | 29, 30 | syl6eqr 2674 |
. . . . . 6
⊢ (¬
𝑊 ∈ V →
(Base‘𝐹) =
∅) |
| 32 | 6, 31 | syl5eq 2668 |
. . . . 5
⊢ (¬
𝑊 ∈ V → 𝐾 = ∅) |
| 33 | 32 | mpteq1d 4738 |
. . . 4
⊢ (¬
𝑊 ∈ V → (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 ))) |
| 34 | 26, 33 | eqtr4d 2659 |
. . 3
⊢ (¬
𝑊 ∈ V →
(algSc‘𝑊) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
| 35 | 23, 34 | pm2.61i 176 |
. 2
⊢
(algSc‘𝑊) =
(𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
| 36 | 1, 35 | eqtri 2644 |
1
⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |