MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclpropd Structured version   Visualization version   Unicode version

Theorem asclpropd 19346
Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. The last hypotheses on  1r can be discharged either by letting  W  =  _V (if strong equality is known on  .s) or assuming  K is a ring. (Contributed by Mario Carneiro, 5-Jul-2015.)
Hypotheses
Ref Expression
asclpropd.f  |-  F  =  (Scalar `  K )
asclpropd.g  |-  G  =  (Scalar `  L )
asclpropd.1  |-  ( ph  ->  P  =  ( Base `  F ) )
asclpropd.2  |-  ( ph  ->  P  =  ( Base `  G ) )
asclpropd.3  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  W ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
asclpropd.4  |-  ( ph  ->  ( 1r `  K
)  =  ( 1r
`  L ) )
asclpropd.5  |-  ( ph  ->  ( 1r `  K
)  e.  W )
Assertion
Ref Expression
asclpropd  |-  ( ph  ->  (algSc `  K )  =  (algSc `  L )
)
Distinct variable groups:    x, y, K    x, L, y    x, P, y    ph, x, y   
x, W, y
Allowed substitution hints:    F( x, y)    G( x, y)

Proof of Theorem asclpropd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 asclpropd.5 . . . . . 6  |-  ( ph  ->  ( 1r `  K
)  e.  W )
2 asclpropd.3 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  W ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
32oveqrspc2v 6673 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  P  /\  ( 1r `  K )  e.  W ) )  -> 
( z ( .s
`  K ) ( 1r `  K ) )  =  ( z ( .s `  L
) ( 1r `  K ) ) )
43anassrs 680 . . . . . 6  |-  ( ( ( ph  /\  z  e.  P )  /\  ( 1r `  K )  e.  W )  ->  (
z ( .s `  K ) ( 1r
`  K ) )  =  ( z ( .s `  L ) ( 1r `  K
) ) )
51, 4mpidan 704 . . . . 5  |-  ( (
ph  /\  z  e.  P )  ->  (
z ( .s `  K ) ( 1r
`  K ) )  =  ( z ( .s `  L ) ( 1r `  K
) ) )
6 asclpropd.4 . . . . . . 7  |-  ( ph  ->  ( 1r `  K
)  =  ( 1r
`  L ) )
76oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( z ( .s
`  L ) ( 1r `  K ) )  =  ( z ( .s `  L
) ( 1r `  L ) ) )
87adantr 481 . . . . 5  |-  ( (
ph  /\  z  e.  P )  ->  (
z ( .s `  L ) ( 1r
`  K ) )  =  ( z ( .s `  L ) ( 1r `  L
) ) )
95, 8eqtrd 2656 . . . 4  |-  ( (
ph  /\  z  e.  P )  ->  (
z ( .s `  K ) ( 1r
`  K ) )  =  ( z ( .s `  L ) ( 1r `  L
) ) )
109mpteq2dva 4744 . . 3  |-  ( ph  ->  ( z  e.  P  |->  ( z ( .s
`  K ) ( 1r `  K ) ) )  =  ( z  e.  P  |->  ( z ( .s `  L ) ( 1r
`  L ) ) ) )
11 asclpropd.1 . . . 4  |-  ( ph  ->  P  =  ( Base `  F ) )
1211mpteq1d 4738 . . 3  |-  ( ph  ->  ( z  e.  P  |->  ( z ( .s
`  K ) ( 1r `  K ) ) )  =  ( z  e.  ( Base `  F )  |->  ( z ( .s `  K
) ( 1r `  K ) ) ) )
13 asclpropd.2 . . . 4  |-  ( ph  ->  P  =  ( Base `  G ) )
1413mpteq1d 4738 . . 3  |-  ( ph  ->  ( z  e.  P  |->  ( z ( .s
`  L ) ( 1r `  L ) ) )  =  ( z  e.  ( Base `  G )  |->  ( z ( .s `  L
) ( 1r `  L ) ) ) )
1510, 12, 143eqtr3d 2664 . 2  |-  ( ph  ->  ( z  e.  (
Base `  F )  |->  ( z ( .s
`  K ) ( 1r `  K ) ) )  =  ( z  e.  ( Base `  G )  |->  ( z ( .s `  L
) ( 1r `  L ) ) ) )
16 eqid 2622 . . 3  |-  (algSc `  K )  =  (algSc `  K )
17 asclpropd.f . . 3  |-  F  =  (Scalar `  K )
18 eqid 2622 . . 3  |-  ( Base `  F )  =  (
Base `  F )
19 eqid 2622 . . 3  |-  ( .s
`  K )  =  ( .s `  K
)
20 eqid 2622 . . 3  |-  ( 1r
`  K )  =  ( 1r `  K
)
2116, 17, 18, 19, 20asclfval 19334 . 2  |-  (algSc `  K )  =  ( z  e.  ( Base `  F )  |->  ( z ( .s `  K
) ( 1r `  K ) ) )
22 eqid 2622 . . 3  |-  (algSc `  L )  =  (algSc `  L )
23 asclpropd.g . . 3  |-  G  =  (Scalar `  L )
24 eqid 2622 . . 3  |-  ( Base `  G )  =  (
Base `  G )
25 eqid 2622 . . 3  |-  ( .s
`  L )  =  ( .s `  L
)
26 eqid 2622 . . 3  |-  ( 1r
`  L )  =  ( 1r `  L
)
2722, 23, 24, 25, 26asclfval 19334 . 2  |-  (algSc `  L )  =  ( z  e.  ( Base `  G )  |->  ( z ( .s `  L
) ( 1r `  L ) ) )
2815, 21, 273eqtr4g 2681 1  |-  ( ph  ->  (algSc `  K )  =  (algSc `  L )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   1rcur 18501  algSccascl 19311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-slot 15861  df-base 15863  df-ascl 19314
This theorem is referenced by:  ply1ascl  19628
  Copyright terms: Public domain W3C validator