![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atlen0 | Structured version Visualization version GIF version |
Description: A lattice element is nonzero if an atom is under it. (Contributed by NM, 26-May-2012.) |
Ref | Expression |
---|---|
atlen0.b | ⊢ 𝐵 = (Base‘𝐾) |
atlen0.l | ⊢ ≤ = (le‘𝐾) |
atlen0.z | ⊢ 0 = (0.‘𝐾) |
atlen0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atlen0 | ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1064 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ AtLat) | |
2 | atlen0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
3 | atlen0.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
4 | 2, 3 | atl0cl 34590 | . . . . 5 ⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 ∈ 𝐵) |
6 | simpl2 1065 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ∈ 𝐵) | |
7 | 1, 5, 6 | 3jca 1242 | . . 3 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → (𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
8 | simpl3 1066 | . . . . . 6 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐴) | |
9 | atlen0.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | 2, 9 | atbase 34576 | . . . . . 6 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
11 | 8, 10 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐵) |
12 | eqid 2622 | . . . . . . 7 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
13 | 3, 12, 9 | atcvr0 34575 | . . . . . 6 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
14 | 1, 8, 13 | syl2anc 693 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 ( ⋖ ‘𝐾)𝑃) |
15 | eqid 2622 | . . . . . 6 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
16 | 2, 15, 12 | cvrlt 34557 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ 0 ( ⋖ ‘𝐾)𝑃) → 0 (lt‘𝐾)𝑃) |
17 | 1, 5, 11, 14, 16 | syl31anc 1329 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 (lt‘𝐾)𝑃) |
18 | simpr 477 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑃 ≤ 𝑋) | |
19 | atlpos 34588 | . . . . . 6 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
20 | 1, 19 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ Poset) |
21 | atlen0.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
22 | 2, 21, 15 | pltletr 16971 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (( 0 (lt‘𝐾)𝑃 ∧ 𝑃 ≤ 𝑋) → 0 (lt‘𝐾)𝑋)) |
23 | 20, 5, 11, 6, 22 | syl13anc 1328 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → (( 0 (lt‘𝐾)𝑃 ∧ 𝑃 ≤ 𝑋) → 0 (lt‘𝐾)𝑋)) |
24 | 17, 18, 23 | mp2and 715 | . . 3 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 (lt‘𝐾)𝑋) |
25 | 15 | pltne 16962 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 (lt‘𝐾)𝑋 → 0 ≠ 𝑋)) |
26 | 7, 24, 25 | sylc 65 | . 2 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 ≠ 𝑋) |
27 | 26 | necomd 2849 | 1 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 class class class wbr 4653 ‘cfv 5888 Basecbs 15857 lecple 15948 Posetcpo 16940 ltcplt 16941 0.cp0 17037 ⋖ ccvr 34549 Atomscatm 34550 AtLatcal 34551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-preset 16928 df-poset 16946 df-plt 16958 df-glb 16975 df-p0 17039 df-lat 17046 df-covers 34553 df-ats 34554 df-atl 34585 |
This theorem is referenced by: ps-2b 34768 2atm 34813 2llnm4 34856 dalem21 34980 dalem54 35012 trlval3 35474 cdlemc5 35482 |
Copyright terms: Public domain | W3C validator |