Proof of Theorem 2atm
Step | Hyp | Ref
| Expression |
1 | | simp31 1097 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑇 ≤ (𝑃 ∨ 𝑄)) |
2 | | simp32 1098 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑇 ≤ (𝑅 ∨ 𝑆)) |
3 | | simp11 1091 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝐾 ∈ HL) |
4 | | hllat 34650 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝐾 ∈ Lat) |
6 | | simp23 1096 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑇 ∈ 𝐴) |
7 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
8 | | 2atm.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
9 | 7, 8 | atbase 34576 |
. . . . 5
⊢ (𝑇 ∈ 𝐴 → 𝑇 ∈ (Base‘𝐾)) |
10 | 6, 9 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑇 ∈ (Base‘𝐾)) |
11 | | simp12 1092 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑃 ∈ 𝐴) |
12 | 7, 8 | atbase 34576 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑃 ∈ (Base‘𝐾)) |
14 | | simp13 1093 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑄 ∈ 𝐴) |
15 | 7, 8 | atbase 34576 |
. . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
16 | 14, 15 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑄 ∈ (Base‘𝐾)) |
17 | | 2atm.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
18 | 7, 17 | latjcl 17051 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
19 | 5, 13, 16, 18 | syl3anc 1326 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
20 | | simp21 1094 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑅 ∈ 𝐴) |
21 | | simp22 1095 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑆 ∈ 𝐴) |
22 | 7, 17, 8 | hlatjcl 34653 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
23 | 3, 20, 21, 22 | syl3anc 1326 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
24 | | 2atm.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
25 | | 2atm.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
26 | 7, 24, 25 | latlem12 17078 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾))) → ((𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆)) ↔ 𝑇 ≤ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)))) |
27 | 5, 10, 19, 23, 26 | syl13anc 1328 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → ((𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆)) ↔ 𝑇 ≤ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)))) |
28 | 1, 2, 27 | mpbi2and 956 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑇 ≤ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆))) |
29 | | hlatl 34647 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
30 | 3, 29 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝐾 ∈ AtLat) |
31 | 7, 25 | latmcl 17052 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ (Base‘𝐾)) |
32 | 5, 19, 23, 31 | syl3anc 1326 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ (Base‘𝐾)) |
33 | | eqid 2622 |
. . . . . . 7
⊢
(0.‘𝐾) =
(0.‘𝐾) |
34 | 7, 24, 33, 8 | atlen0 34597 |
. . . . . 6
⊢ (((𝐾 ∈ AtLat ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ (Base‘𝐾) ∧ 𝑇 ∈ 𝐴) ∧ 𝑇 ≤ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆))) → ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ (0.‘𝐾)) |
35 | 30, 32, 6, 28, 34 | syl31anc 1329 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ (0.‘𝐾)) |
36 | 35 | neneqd 2799 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → ¬ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = (0.‘𝐾)) |
37 | | simp33 1099 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆)) |
38 | 17, 25, 33, 8 | 2atmat0 34812 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = (0.‘𝐾))) |
39 | 3, 11, 14, 20, 21, 37, 38 | syl33anc 1341 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = (0.‘𝐾))) |
40 | 39 | ord 392 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (¬ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 → ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = (0.‘𝐾))) |
41 | 36, 40 | mt3d 140 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴) |
42 | 24, 8 | atcmp 34598 |
. . 3
⊢ ((𝐾 ∈ AtLat ∧ 𝑇 ∈ 𝐴 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴) → (𝑇 ≤ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ↔ 𝑇 = ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)))) |
43 | 30, 6, 41, 42 | syl3anc 1326 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (𝑇 ≤ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ↔ 𝑇 = ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)))) |
44 | 28, 43 | mpbid 222 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑇 = ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆))) |