![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atmod1i1 | Structured version Visualization version GIF version |
Description: Version of modular law pmod1i 35134 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 11-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
atmod.b | ⊢ 𝐵 = (Base‘𝐾) |
atmod.l | ⊢ ≤ = (le‘𝐾) |
atmod.j | ⊢ ∨ = (join‘𝐾) |
atmod.m | ⊢ ∧ = (meet‘𝐾) |
atmod.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atmod1i1 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = ((𝑃 ∨ 𝑋) ∧ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 473 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐾 ∈ HL) | |
2 | simpr2 1068 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
3 | simpr1 1067 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑃 ∈ 𝐴) | |
4 | atmod.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
5 | atmod.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
6 | atmod.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | eqid 2622 | . . . . . 6 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
8 | eqid 2622 | . . . . . 6 ⊢ (+𝑃‘𝐾) = (+𝑃‘𝐾) | |
9 | 4, 5, 6, 7, 8 | pmapjat2 35140 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((pmap‘𝐾)‘(𝑃 ∨ 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑋))) |
10 | 1, 2, 3, 9 | syl3anc 1326 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((pmap‘𝐾)‘(𝑃 ∨ 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑋))) |
11 | 4, 6 | atbase 34576 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
12 | atmod.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
13 | atmod.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
14 | 4, 12, 5, 13, 7, 8 | hlmod1i 35142 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑃 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑃 ∨ 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑋))) → ((𝑃 ∨ 𝑋) ∧ 𝑌) = (𝑃 ∨ (𝑋 ∧ 𝑌)))) |
15 | 11, 14 | syl3anr1 1378 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑃 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑃 ∨ 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑋))) → ((𝑃 ∨ 𝑋) ∧ 𝑌) = (𝑃 ∨ (𝑋 ∧ 𝑌)))) |
16 | 10, 15 | mpan2d 710 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑃 ≤ 𝑌 → ((𝑃 ∨ 𝑋) ∧ 𝑌) = (𝑃 ∨ (𝑋 ∧ 𝑌)))) |
17 | 16 | 3impia 1261 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → ((𝑃 ∨ 𝑋) ∧ 𝑌) = (𝑃 ∨ (𝑋 ∧ 𝑌))) |
18 | 17 | eqcomd 2628 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = ((𝑃 ∨ 𝑋) ∧ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 lecple 15948 joincjn 16944 meetcmee 16945 Atomscatm 34550 HLchlt 34637 pmapcpmap 34783 +𝑃cpadd 35081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-psubsp 34789 df-pmap 34790 df-padd 35082 |
This theorem is referenced by: atmod1i1m 35144 atmod2i1 35147 atmod3i1 35150 atmod4i1 35152 dalawlem6 35162 dalawlem11 35167 dalawlem12 35168 cdleme11g 35552 cdlemednpq 35586 cdleme20c 35599 cdleme22e 35632 cdleme22eALTN 35633 cdleme35c 35739 |
Copyright terms: Public domain | W3C validator |