![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapjat2 | Structured version Visualization version GIF version |
Description: The projective map of the join of an atom with a lattice element. (Contributed by NM, 12-May-2012.) |
Ref | Expression |
---|---|
pmapjat.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapjat.j | ⊢ ∨ = (join‘𝐾) |
pmapjat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmapjat.m | ⊢ 𝑀 = (pmap‘𝐾) |
pmapjat.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
pmapjat2 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑄 ∨ 𝑋)) = ((𝑀‘𝑄) + (𝑀‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapjat.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | pmapjat.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | pmapjat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | pmapjat.m | . . 3 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | pmapjat.p | . . 3 ⊢ + = (+𝑃‘𝐾) | |
6 | 1, 2, 3, 4, 5 | pmapjat1 35139 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑋 ∨ 𝑄)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) |
7 | hllat 34650 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
8 | 7 | 3ad2ant1 1082 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ Lat) |
9 | 1, 3 | atbase 34576 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
10 | 9 | 3ad2ant3 1084 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ 𝐵) |
11 | simp2 1062 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
12 | 1, 2 | latjcom 17059 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑄 ∨ 𝑋) = (𝑋 ∨ 𝑄)) |
13 | 8, 10, 11, 12 | syl3anc 1326 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑄 ∨ 𝑋) = (𝑋 ∨ 𝑄)) |
14 | 13 | fveq2d 6195 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑄 ∨ 𝑋)) = (𝑀‘(𝑋 ∨ 𝑄))) |
15 | simp1 1061 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ HL) | |
16 | 1, 3, 4 | pmapssat 35045 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵) → (𝑀‘𝑄) ⊆ 𝐴) |
17 | 15, 10, 16 | syl2anc 693 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘𝑄) ⊆ 𝐴) |
18 | 1, 3, 4 | pmapssat 35045 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ 𝐴) |
19 | 18 | 3adant3 1081 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘𝑋) ⊆ 𝐴) |
20 | 3, 5 | paddcom 35099 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑀‘𝑄) ⊆ 𝐴 ∧ (𝑀‘𝑋) ⊆ 𝐴) → ((𝑀‘𝑄) + (𝑀‘𝑋)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) |
21 | 8, 17, 19, 20 | syl3anc 1326 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → ((𝑀‘𝑄) + (𝑀‘𝑋)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) |
22 | 6, 14, 21 | 3eqtr4d 2666 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑄 ∨ 𝑋)) = ((𝑀‘𝑄) + (𝑀‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 joincjn 16944 Latclat 17045 Atomscatm 34550 HLchlt 34637 pmapcpmap 34783 +𝑃cpadd 35081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-pmap 34790 df-padd 35082 |
This theorem is referenced by: atmod1i1 35143 |
Copyright terms: Public domain | W3C validator |