![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hvaddid | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvaddid | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | chil 27776 | . . 3 class ℋ | |
3 | 1, 2 | wcel 1990 | . 2 wff 𝐴 ∈ ℋ |
4 | c0v 27781 | . . . 4 class 0ℎ | |
5 | cva 27777 | . . . 4 class +ℎ | |
6 | 1, 4, 5 | co 6650 | . . 3 class (𝐴 +ℎ 0ℎ) |
7 | 6, 1 | wceq 1483 | . 2 wff (𝐴 +ℎ 0ℎ) = 𝐴 |
8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvaddid2 27880 hvpncan 27896 hvsubeq0i 27920 hvsubcan2i 27921 hvsubaddi 27923 hvsub0 27933 hvaddsub4 27935 norm3difi 28004 shsel1 28180 shunssi 28227 omlsilem 28261 pjoc1i 28290 pjchi 28291 spansncvi 28511 5oalem1 28513 5oalem2 28514 3oalem2 28522 pjssmii 28540 hoaddid1i 28645 lnop0 28825 lnopmul 28826 lnfn0i 28901 lnfnmuli 28903 pjclem4 29058 pj3si 29066 hst1h 29086 sumdmdlem 29277 |
Copyright terms: Public domain | W3C validator |