HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopmul Structured version   Visualization version   GIF version

Theorem lnopmul 28826
Description: Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnopmul ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)))

Proof of Theorem lnopmul
StepHypRef Expression
1 ax-hv0cl 27860 . . . 4 0 ∈ ℋ
2 lnopl 28773 . . . 4 (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 0 ∈ ℋ)) → (𝑇‘((𝐴 · 𝐵) + 0)) = ((𝐴 · (𝑇𝐵)) + (𝑇‘0)))
31, 2mpanr2 720 . . 3 (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) + 0)) = ((𝐴 · (𝑇𝐵)) + (𝑇‘0)))
433impa 1259 . 2 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) + 0)) = ((𝐴 · (𝑇𝐵)) + (𝑇‘0)))
5 hvmulcl 27870 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
6 ax-hvaddid 27861 . . . . 5 ((𝐴 · 𝐵) ∈ ℋ → ((𝐴 · 𝐵) + 0) = (𝐴 · 𝐵))
75, 6syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) + 0) = (𝐴 · 𝐵))
873adant1 1079 . . 3 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) + 0) = (𝐴 · 𝐵))
98fveq2d 6195 . 2 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) + 0)) = (𝑇‘(𝐴 · 𝐵)))
10 lnop0 28825 . . . . 5 (𝑇 ∈ LinOp → (𝑇‘0) = 0)
1110oveq2d 6666 . . . 4 (𝑇 ∈ LinOp → ((𝐴 · (𝑇𝐵)) + (𝑇‘0)) = ((𝐴 · (𝑇𝐵)) + 0))
12113ad2ant1 1082 . . 3 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇𝐵)) + (𝑇‘0)) = ((𝐴 · (𝑇𝐵)) + 0))
13 lnopf 28718 . . . . . . . 8 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
1413ffvelrnda 6359 . . . . . . 7 ((𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ) → (𝑇𝐵) ∈ ℋ)
15 hvmulcl 27870 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑇𝐵) ∈ ℋ) → (𝐴 · (𝑇𝐵)) ∈ ℋ)
1614, 15sylan2 491 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ)) → (𝐴 · (𝑇𝐵)) ∈ ℋ)
17163impb 1260 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ) → (𝐴 · (𝑇𝐵)) ∈ ℋ)
18173com12 1269 . . . 4 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · (𝑇𝐵)) ∈ ℋ)
19 ax-hvaddid 27861 . . . 4 ((𝐴 · (𝑇𝐵)) ∈ ℋ → ((𝐴 · (𝑇𝐵)) + 0) = (𝐴 · (𝑇𝐵)))
2018, 19syl 17 . . 3 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇𝐵)) + 0) = (𝐴 · (𝑇𝐵)))
2112, 20eqtrd 2656 . 2 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇𝐵)) + (𝑇‘0)) = (𝐴 · (𝑇𝐵)))
224, 9, 213eqtr3d 2664 1 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  cc 9934  chil 27776   + cva 27777   · csm 27778  0c0v 27781  LinOpclo 27804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-hilex 27856  ax-hfvadd 27857  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvdistr2 27866  ax-hvmul0 27867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-hvsub 27828  df-lnop 28700
This theorem is referenced by:  lnopmuli  28831  homco2  28836
  Copyright terms: Public domain W3C validator