![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shunssi | Structured version Visualization version GIF version |
Description: Union is smaller than subspace sum. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shincl.1 | ⊢ 𝐴 ∈ Sℋ |
shincl.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shunssi | ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.1 | . . . . . . 7 ⊢ 𝐴 ∈ Sℋ | |
2 | 1 | sheli 28071 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℋ) |
3 | ax-hvaddid 27861 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (𝑥 +ℎ 0ℎ) = 𝑥) | |
4 | 3 | eqcomd 2628 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → 𝑥 = (𝑥 +ℎ 0ℎ)) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → 𝑥 = (𝑥 +ℎ 0ℎ)) |
6 | shincl.2 | . . . . . . 7 ⊢ 𝐵 ∈ Sℋ | |
7 | sh0 28073 | . . . . . . 7 ⊢ (𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ 0ℎ ∈ 𝐵 |
9 | rspceov 6692 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 0ℎ ∈ 𝐵 ∧ 𝑥 = (𝑥 +ℎ 0ℎ)) → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) | |
10 | 8, 9 | mp3an2 1412 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = (𝑥 +ℎ 0ℎ)) → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
11 | 5, 10 | mpdan 702 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
12 | 6 | sheli 28071 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ) |
13 | hvaddid2 27880 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (0ℎ +ℎ 𝑥) = 𝑥) | |
14 | 13 | eqcomd 2628 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → 𝑥 = (0ℎ +ℎ 𝑥)) |
15 | 12, 14 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → 𝑥 = (0ℎ +ℎ 𝑥)) |
16 | sh0 28073 | . . . . . . 7 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴) | |
17 | 1, 16 | ax-mp 5 | . . . . . 6 ⊢ 0ℎ ∈ 𝐴 |
18 | rspceov 6692 | . . . . . 6 ⊢ ((0ℎ ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 = (0ℎ +ℎ 𝑥)) → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) | |
19 | 17, 18 | mp3an1 1411 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 = (0ℎ +ℎ 𝑥)) → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
20 | 15, 19 | mpdan 702 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
21 | 11, 20 | jaoi 394 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
22 | elun 3753 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
23 | 1, 6 | shseli 28175 | . . 3 ⊢ (𝑥 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
24 | 21, 22, 23 | 3imtr4i 281 | . 2 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ (𝐴 +ℋ 𝐵)) |
25 | 24 | ssriv 3607 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 383 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 ∪ cun 3572 ⊆ wss 3574 (class class class)co 6650 ℋchil 27776 +ℎ cva 27777 0ℎc0v 27781 Sℋ csh 27785 +ℋ cph 27788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-hilex 27856 ax-hfvadd 27857 ax-hvcom 27858 ax-hvass 27859 ax-hv0cl 27860 ax-hvaddid 27861 ax-hfvmul 27862 ax-hvmulid 27863 ax-hvdistr2 27866 ax-hvmul0 27867 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-ltxr 10079 df-sub 10268 df-neg 10269 df-grpo 27347 df-ablo 27399 df-hvsub 27828 df-sh 28064 df-shs 28167 |
This theorem is referenced by: shsval2i 28246 shjshsi 28351 spanuni 28403 |
Copyright terms: Public domain | W3C validator |