| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bi2anan9r | Structured version Visualization version GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996.) |
| Ref | Expression |
|---|---|
| bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| bi2anan9r | ⊢ ((𝜃 ∧ 𝜑) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
| 3 | 1, 2 | bi2anan9 917 | . 2 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| 4 | 3 | ancoms 469 | 1 ⊢ ((𝜃 ∧ 𝜑) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: efrn2lp 5096 ltsosr 9915 seqf1olem2 12841 seqf1o 12842 pcval 15549 uspgr2wlkeq 26542 fneval 32347 prtlem5 34145 rmydioph 37581 wepwsolem 37612 aomclem8 37631 sprsymrelfolem2 41743 |
| Copyright terms: Public domain | W3C validator |