Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem8 Structured version   Visualization version   GIF version

Theorem aomclem8 37631
Description: Lemma for dfac11 37632. Perform variable substitutions. This is the most we can say without invoking regularity. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem8.a (𝜑𝐴 ∈ On)
aomclem8.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem8 (𝜑 → ∃𝑏 𝑏 We (𝑅1𝐴))
Distinct variable groups:   𝜑,𝑏   𝐴,𝑎,𝑏   𝑦,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐴(𝑦)

Proof of Theorem aomclem8
Dummy variables 𝑐 𝑑 𝑒 𝑓 𝑔 𝑖 𝑗 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elequ2 2004 . . . . . . 7 ( = 𝑏 → (𝑖𝑖𝑏))
2 elequ2 2004 . . . . . . . 8 (𝑔 = 𝑐 → (𝑖𝑔𝑖𝑐))
32notbid 308 . . . . . . 7 (𝑔 = 𝑐 → (¬ 𝑖𝑔 ↔ ¬ 𝑖𝑐))
41, 3bi2anan9r 918 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → ((𝑖 ∧ ¬ 𝑖𝑔) ↔ (𝑖𝑏 ∧ ¬ 𝑖𝑐)))
5 elequ2 2004 . . . . . . . . 9 (𝑔 = 𝑐 → (𝑗𝑔𝑗𝑐))
6 elequ2 2004 . . . . . . . . 9 ( = 𝑏 → (𝑗𝑗𝑏))
75, 6bi2bian9 919 . . . . . . . 8 ((𝑔 = 𝑐 = 𝑏) → ((𝑗𝑔𝑗) ↔ (𝑗𝑐𝑗𝑏)))
87imbi2d 330 . . . . . . 7 ((𝑔 = 𝑐 = 𝑏) → ((𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)) ↔ (𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏))))
98ralbidv 2986 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → (∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)) ↔ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏))))
104, 9anbi12d 747 . . . . 5 ((𝑔 = 𝑐 = 𝑏) → (((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))) ↔ ((𝑖𝑏 ∧ ¬ 𝑖𝑐) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)))))
1110rexbidv 3052 . . . 4 ((𝑔 = 𝑐 = 𝑏) → (∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))) ↔ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖𝑏 ∧ ¬ 𝑖𝑐) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)))))
12 elequ1 1997 . . . . . . 7 (𝑖 = 𝑑 → (𝑖𝑏𝑑𝑏))
13 elequ1 1997 . . . . . . . 8 (𝑖 = 𝑑 → (𝑖𝑐𝑑𝑐))
1413notbid 308 . . . . . . 7 (𝑖 = 𝑑 → (¬ 𝑖𝑐 ↔ ¬ 𝑑𝑐))
1512, 14anbi12d 747 . . . . . 6 (𝑖 = 𝑑 → ((𝑖𝑏 ∧ ¬ 𝑖𝑐) ↔ (𝑑𝑏 ∧ ¬ 𝑑𝑐)))
16 breq2 4657 . . . . . . . . 9 (𝑖 = 𝑑 → (𝑗(𝑒 dom 𝑒)𝑖𝑗(𝑒 dom 𝑒)𝑑))
1716imbi1d 331 . . . . . . . 8 (𝑖 = 𝑑 → ((𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)) ↔ (𝑗(𝑒 dom 𝑒)𝑑 → (𝑗𝑐𝑗𝑏))))
1817ralbidv 2986 . . . . . . 7 (𝑖 = 𝑑 → (∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)) ↔ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑑 → (𝑗𝑐𝑗𝑏))))
19 breq1 4656 . . . . . . . . 9 (𝑗 = 𝑓 → (𝑗(𝑒 dom 𝑒)𝑑𝑓(𝑒 dom 𝑒)𝑑))
20 elequ1 1997 . . . . . . . . . 10 (𝑗 = 𝑓 → (𝑗𝑐𝑓𝑐))
21 elequ1 1997 . . . . . . . . . 10 (𝑗 = 𝑓 → (𝑗𝑏𝑓𝑏))
2220, 21bibi12d 335 . . . . . . . . 9 (𝑗 = 𝑓 → ((𝑗𝑐𝑗𝑏) ↔ (𝑓𝑐𝑓𝑏)))
2319, 22imbi12d 334 . . . . . . . 8 (𝑗 = 𝑓 → ((𝑗(𝑒 dom 𝑒)𝑑 → (𝑗𝑐𝑗𝑏)) ↔ (𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏))))
2423cbvralv 3171 . . . . . . 7 (∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑑 → (𝑗𝑐𝑗𝑏)) ↔ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏)))
2518, 24syl6bb 276 . . . . . 6 (𝑖 = 𝑑 → (∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)) ↔ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏))))
2615, 25anbi12d 747 . . . . 5 (𝑖 = 𝑑 → (((𝑖𝑏 ∧ ¬ 𝑖𝑐) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏))) ↔ ((𝑑𝑏 ∧ ¬ 𝑑𝑐) ∧ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏)))))
2726cbvrexv 3172 . . . 4 (∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖𝑏 ∧ ¬ 𝑖𝑐) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏))) ↔ ∃𝑑 ∈ (𝑅1 dom 𝑒)((𝑑𝑏 ∧ ¬ 𝑑𝑐) ∧ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏))))
2811, 27syl6bb 276 . . 3 ((𝑔 = 𝑐 = 𝑏) → (∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))) ↔ ∃𝑑 ∈ (𝑅1 dom 𝑒)((𝑑𝑏 ∧ ¬ 𝑑𝑐) ∧ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏)))))
2928cbvopabv 4722 . 2 {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))} = {⟨𝑐, 𝑏⟩ ∣ ∃𝑑 ∈ (𝑅1 dom 𝑒)((𝑑𝑏 ∧ ¬ 𝑑𝑐) ∧ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏)))}
30 nfcv 2764 . . 3 𝑐sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})
31 nfcv 2764 . . . 4 𝑔(𝑦𝑐)
32 nfcv 2764 . . . 4 𝑔(𝑅1‘dom 𝑒)
33 nfopab1 4719 . . . 4 𝑔{⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}
3431, 32, 33nfsup 8357 . . 3 𝑔sup((𝑦𝑐), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})
35 fveq2 6191 . . . 4 (𝑔 = 𝑐 → (𝑦𝑔) = (𝑦𝑐))
3635supeq1d 8352 . . 3 (𝑔 = 𝑐 → sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}) = sup((𝑦𝑐), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))
3730, 34, 36cbvmpt 4749 . 2 (𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})) = (𝑐 ∈ V ↦ sup((𝑦𝑐), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))
38 nfcv 2764 . . . 4 𝑐((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))
39 nffvmpt1 6199 . . . 4 𝑔((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐))
40 rneq 5351 . . . . . 6 (𝑔 = 𝑐 → ran 𝑔 = ran 𝑐)
4140difeq2d 3728 . . . . 5 (𝑔 = 𝑐 → ((𝑅1‘dom 𝑒) ∖ ran 𝑔) = ((𝑅1‘dom 𝑒) ∖ ran 𝑐))
4241fveq2d 6195 . . . 4 (𝑔 = 𝑐 → ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)) = ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐)))
4338, 39, 42cbvmpt 4749 . . 3 (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))) = (𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐)))
44 recseq 7470 . . 3 ((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))) = (𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐))) → recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) = recs((𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐)))))
4543, 44ax-mp 5 . 2 recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) = recs((𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐))))
46 nfv 1843 . . 3 𝑐 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})
47 nfv 1843 . . 3 𝑏 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})
48 nfmpt1 4747 . . . . . . . 8 𝑔(𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))
4948nfrecs 7471 . . . . . . 7 𝑔recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
5049nfcnv 5301 . . . . . 6 𝑔recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
51 nfcv 2764 . . . . . 6 𝑔{𝑐}
5250, 51nfima 5474 . . . . 5 𝑔(recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐})
5352nfint 4486 . . . 4 𝑔 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐})
54 nfcv 2764 . . . . . 6 𝑔{𝑏}
5550, 54nfima 5474 . . . . 5 𝑔(recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
5655nfint 4486 . . . 4 𝑔 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
5753, 56nfel 2777 . . 3 𝑔 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
58 nfcv 2764 . . . . . . . . 9 V
59 nfcv 2764 . . . . . . . . . . . 12 (𝑦𝑔)
60 nfcv 2764 . . . . . . . . . . . 12 (𝑅1‘dom 𝑒)
61 nfopab2 4720 . . . . . . . . . . . 12 {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}
6259, 60, 61nfsup 8357 . . . . . . . . . . 11 sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})
6358, 62nfmpt 4746 . . . . . . . . . 10 (𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))
64 nfcv 2764 . . . . . . . . . 10 ((𝑅1‘dom 𝑒) ∖ ran 𝑔)
6563, 64nffv 6198 . . . . . . . . 9 ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))
6658, 65nfmpt 4746 . . . . . . . 8 (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))
6766nfrecs 7471 . . . . . . 7 recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
6867nfcnv 5301 . . . . . 6 recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
69 nfcv 2764 . . . . . 6 {𝑐}
7068, 69nfima 5474 . . . . 5 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐})
7170nfint 4486 . . . 4 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐})
72 nfcv 2764 . . . . . 6 {𝑏}
7368, 72nfima 5474 . . . . 5 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
7473nfint 4486 . . . 4 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
7571, 74nfel 2777 . . 3 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
76 sneq 4187 . . . . . 6 (𝑔 = 𝑐 → {𝑔} = {𝑐})
7776imaeq2d 5466 . . . . 5 (𝑔 = 𝑐 → (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}))
7877inteqd 4480 . . . 4 (𝑔 = 𝑐 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}))
79 sneq 4187 . . . . . 6 ( = 𝑏 → {} = {𝑏})
8079imaeq2d 5466 . . . . 5 ( = 𝑏 → (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏}))
8180inteqd 4480 . . . 4 ( = 𝑏 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏}))
82 eleq12 2691 . . . 4 (( (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∧ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})) → ( (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) ↔ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})))
8378, 81, 82syl2an 494 . . 3 ((𝑔 = 𝑐 = 𝑏) → ( (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) ↔ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})))
8446, 47, 57, 75, 83cbvopab 4721 . 2 {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})} = {⟨𝑐, 𝑏⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})}
85 fveq2 6191 . . . . 5 (𝑔 = 𝑐 → (rank‘𝑔) = (rank‘𝑐))
86 fveq2 6191 . . . . 5 ( = 𝑏 → (rank‘) = (rank‘𝑏))
8785, 86breqan12d 4669 . . . 4 ((𝑔 = 𝑐 = 𝑏) → ((rank‘𝑔) E (rank‘) ↔ (rank‘𝑐) E (rank‘𝑏)))
8885, 86eqeqan12d 2638 . . . . 5 ((𝑔 = 𝑐 = 𝑏) → ((rank‘𝑔) = (rank‘) ↔ (rank‘𝑐) = (rank‘𝑏)))
89 simpl 473 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → 𝑔 = 𝑐)
90 suceq 5790 . . . . . . . . 9 ((rank‘𝑔) = (rank‘𝑐) → suc (rank‘𝑔) = suc (rank‘𝑐))
9185, 90syl 17 . . . . . . . 8 (𝑔 = 𝑐 → suc (rank‘𝑔) = suc (rank‘𝑐))
9291adantr 481 . . . . . . 7 ((𝑔 = 𝑐 = 𝑏) → suc (rank‘𝑔) = suc (rank‘𝑐))
9392fveq2d 6195 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → (𝑒‘suc (rank‘𝑔)) = (𝑒‘suc (rank‘𝑐)))
94 simpr 477 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → = 𝑏)
9589, 93, 94breq123d 4667 . . . . 5 ((𝑔 = 𝑐 = 𝑏) → (𝑔(𝑒‘suc (rank‘𝑔))𝑐(𝑒‘suc (rank‘𝑐))𝑏))
9688, 95anbi12d 747 . . . 4 ((𝑔 = 𝑐 = 𝑏) → (((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))) ↔ ((rank‘𝑐) = (rank‘𝑏) ∧ 𝑐(𝑒‘suc (rank‘𝑐))𝑏)))
9787, 96orbi12d 746 . . 3 ((𝑔 = 𝑐 = 𝑏) → (((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔)))) ↔ ((rank‘𝑐) E (rank‘𝑏) ∨ ((rank‘𝑐) = (rank‘𝑏) ∧ 𝑐(𝑒‘suc (rank‘𝑐))𝑏))))
9897cbvopabv 4722 . 2 {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))} = {⟨𝑐, 𝑏⟩ ∣ ((rank‘𝑐) E (rank‘𝑏) ∨ ((rank‘𝑐) = (rank‘𝑏) ∧ 𝑐(𝑒‘suc (rank‘𝑐))𝑏))}
99 eqid 2622 . 2 (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒))) = (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒)))
100 dmeq 5324 . . . . . . 7 (𝑙 = 𝑒 → dom 𝑙 = dom 𝑒)
101100unieqd 4446 . . . . . . 7 (𝑙 = 𝑒 dom 𝑙 = dom 𝑒)
102100, 101eqeq12d 2637 . . . . . 6 (𝑙 = 𝑒 → (dom 𝑙 = dom 𝑙 ↔ dom 𝑒 = dom 𝑒))
103 fveq1 6190 . . . . . . . . . 10 (𝑙 = 𝑒 → (𝑙‘suc (rank‘𝑔)) = (𝑒‘suc (rank‘𝑔)))
104103breqd 4664 . . . . . . . . 9 (𝑙 = 𝑒 → (𝑔(𝑙‘suc (rank‘𝑔))𝑔(𝑒‘suc (rank‘𝑔))))
105104anbi2d 740 . . . . . . . 8 (𝑙 = 𝑒 → (((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))) ↔ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔)))))
106105orbi2d 738 . . . . . . 7 (𝑙 = 𝑒 → (((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔)))) ↔ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))))
107106opabbidv 4716 . . . . . 6 (𝑙 = 𝑒 → {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))} = {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))})
108 eqidd 2623 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑒 → (𝑦𝑔) = (𝑦𝑔))
109100fveq2d 6195 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑒 → (𝑅1‘dom 𝑙) = (𝑅1‘dom 𝑒))
110101fveq2d 6195 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑒 → (𝑅1 dom 𝑙) = (𝑅1 dom 𝑒))
111 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑒𝑙 = 𝑒)
112111, 101fveq12d 6197 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑒 → (𝑙 dom 𝑙) = (𝑒 dom 𝑒))
113112breqd 4664 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑒 → (𝑗(𝑙 dom 𝑙)𝑖𝑗(𝑒 dom 𝑒)𝑖))
114113imbi1d 331 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑒 → ((𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)) ↔ (𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))))
115110, 114raleqbidv 3152 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑒 → (∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)) ↔ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))))
116115anbi2d 740 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑒 → (((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗))) ↔ ((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))))
117110, 116rexeqbidv 3153 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑒 → (∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗))) ↔ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))))
118117opabbidv 4716 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑒 → {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))} = {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})
119108, 109, 118supeq123d 8356 . . . . . . . . . . . . . . 15 (𝑙 = 𝑒 → sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}) = sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))
120119mpteq2dv 4745 . . . . . . . . . . . . . 14 (𝑙 = 𝑒 → (𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))})) = (𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})))
121109difeq1d 3727 . . . . . . . . . . . . . 14 (𝑙 = 𝑒 → ((𝑅1‘dom 𝑙) ∖ ran 𝑔) = ((𝑅1‘dom 𝑒) ∖ ran 𝑔))
122120, 121fveq12d 6197 . . . . . . . . . . . . 13 (𝑙 = 𝑒 → ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)) = ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))
123122mpteq2dv 4745 . . . . . . . . . . . 12 (𝑙 = 𝑒 → (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔))) = (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
124 recseq 7470 . . . . . . . . . . . 12 ((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔))) = (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))) → recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) = recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))))
125123, 124syl 17 . . . . . . . . . . 11 (𝑙 = 𝑒 → recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) = recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))))
126125cnveqd 5298 . . . . . . . . . 10 (𝑙 = 𝑒recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) = recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))))
127126imaeq1d 5465 . . . . . . . . 9 (𝑙 = 𝑒 → (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}))
128127inteqd 4480 . . . . . . . 8 (𝑙 = 𝑒 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}))
129126imaeq1d 5465 . . . . . . . . 9 (𝑙 = 𝑒 → (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}))
130129inteqd 4480 . . . . . . . 8 (𝑙 = 𝑒 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}))
131128, 130eleq12d 2695 . . . . . . 7 (𝑙 = 𝑒 → ( (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {}) ↔ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})))
132131opabbidv 4716 . . . . . 6 (𝑙 = 𝑒 → {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})} = {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})})
133102, 107, 132ifbieq12d 4113 . . . . 5 (𝑙 = 𝑒 → if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) = if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}))
134109sqxpeqd 5141 . . . . 5 (𝑙 = 𝑒 → ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙)) = ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒)))
135133, 134ineq12d 3815 . . . 4 (𝑙 = 𝑒 → (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙))) = (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒))))
136135cbvmptv 4750 . . 3 (𝑙 ∈ V ↦ (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙)))) = (𝑒 ∈ V ↦ (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒))))
137 recseq 7470 . . 3 ((𝑙 ∈ V ↦ (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙)))) = (𝑒 ∈ V ↦ (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒)))) → recs((𝑙 ∈ V ↦ (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙))))) = recs((𝑒 ∈ V ↦ (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒))))))
138136, 137ax-mp 5 . 2 recs((𝑙 ∈ V ↦ (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙))))) = recs((𝑒 ∈ V ↦ (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒)))))
139 aomclem8.a . 2 (𝜑𝐴 ∈ On)
140 aomclem8.y . . 3 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
141 neeq1 2856 . . . . 5 (𝑎 = 𝑐 → (𝑎 ≠ ∅ ↔ 𝑐 ≠ ∅))
142 fveq2 6191 . . . . . 6 (𝑎 = 𝑐 → (𝑦𝑎) = (𝑦𝑐))
143 pweq 4161 . . . . . . . 8 (𝑎 = 𝑐 → 𝒫 𝑎 = 𝒫 𝑐)
144143ineq1d 3813 . . . . . . 7 (𝑎 = 𝑐 → (𝒫 𝑎 ∩ Fin) = (𝒫 𝑐 ∩ Fin))
145144difeq1d 3727 . . . . . 6 (𝑎 = 𝑐 → ((𝒫 𝑎 ∩ Fin) ∖ {∅}) = ((𝒫 𝑐 ∩ Fin) ∖ {∅}))
146142, 145eleq12d 2695 . . . . 5 (𝑎 = 𝑐 → ((𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}) ↔ (𝑦𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖ {∅})))
147141, 146imbi12d 334 . . . 4 (𝑎 = 𝑐 → ((𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})) ↔ (𝑐 ≠ ∅ → (𝑦𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖ {∅}))))
148147cbvralv 3171 . . 3 (∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})) ↔ ∀𝑐 ∈ 𝒫 (𝑅1𝐴)(𝑐 ≠ ∅ → (𝑦𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖ {∅})))
149140, 148sylib 208 . 2 (𝜑 → ∀𝑐 ∈ 𝒫 (𝑅1𝐴)(𝑐 ≠ ∅ → (𝑦𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖ {∅})))
15029, 37, 45, 84, 98, 99, 138, 139, 149aomclem7 37630 1 (𝜑 → ∃𝑏 𝑏 We (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  cin 3573  c0 3915  ifcif 4086  𝒫 cpw 4158  {csn 4177   cuni 4436   cint 4475   class class class wbr 4653  {copab 4712  cmpt 4729   E cep 5028   We wwe 5072   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  Oncon0 5723  suc csuc 5725  cfv 5888  recscrecs 7467  Fincfn 7955  supcsup 8346  𝑅1cr1 8625  rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-sup 8348  df-r1 8627  df-rank 8628
This theorem is referenced by:  dfac11  37632
  Copyright terms: Public domain W3C validator