MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsosr Structured version   Visualization version   GIF version

Theorem ltsosr 9915
Description: Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltsosr <R Or R

Proof of Theorem ltsosr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 9878 . . 3 R = ((P × P) / ~R )
2 breq1 4656 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝑓 <R [⟨𝑧, 𝑤⟩] ~R ))
3 eqeq1 2626 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R𝑓 = [⟨𝑧, 𝑤⟩] ~R ))
4 breq2 4657 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ [⟨𝑧, 𝑤⟩] ~R <R 𝑓))
53, 4orbi12d 746 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → (([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ (𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓)))
65notbid 308 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → (¬ ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ¬ (𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓)))
72, 6bibi12d 335 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ ¬ ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )) ↔ (𝑓 <R [⟨𝑧, 𝑤⟩] ~R ↔ ¬ (𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓))))
8 breq2 4657 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → (𝑓 <R [⟨𝑧, 𝑤⟩] ~R𝑓 <R 𝑔))
9 eqeq2 2633 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → (𝑓 = [⟨𝑧, 𝑤⟩] ~R𝑓 = 𝑔))
10 breq1 4656 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ([⟨𝑧, 𝑤⟩] ~R <R 𝑓𝑔 <R 𝑓))
119, 10orbi12d 746 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ((𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓) ↔ (𝑓 = 𝑔𝑔 <R 𝑓)))
1211notbid 308 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → (¬ (𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓) ↔ ¬ (𝑓 = 𝑔𝑔 <R 𝑓)))
138, 12bibi12d 335 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ↔ ¬ (𝑓 = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝑓)) ↔ (𝑓 <R 𝑔 ↔ ¬ (𝑓 = 𝑔𝑔 <R 𝑓))))
14 ltsrpr 9898 . . . 4 ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧))
15 addclpr 9840 . . . . . . 7 ((𝑥P𝑤P) → (𝑥 +P 𝑤) ∈ P)
16 addclpr 9840 . . . . . . 7 ((𝑦P𝑧P) → (𝑦 +P 𝑧) ∈ P)
17 ltsopr 9854 . . . . . . . 8 <P Or P
18 sotric 5061 . . . . . . . 8 ((<P Or P ∧ ((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ¬ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
1917, 18mpan 706 . . . . . . 7 (((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ¬ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
2015, 16, 19syl2an 494 . . . . . 6 (((𝑥P𝑤P) ∧ (𝑦P𝑧P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ¬ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
2120an42s 870 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ¬ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
22 enreceq 9887 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
23 ltsrpr 9898 . . . . . . . . 9 ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))
24 addcompr 9843 . . . . . . . . . 10 (𝑧 +P 𝑦) = (𝑦 +P 𝑧)
25 addcompr 9843 . . . . . . . . . 10 (𝑤 +P 𝑥) = (𝑥 +P 𝑤)
2624, 25breq12i 4662 . . . . . . . . 9 ((𝑧 +P 𝑦)<P (𝑤 +P 𝑥) ↔ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))
2723, 26bitri 264 . . . . . . . 8 ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))
2827a1i 11 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)))
2922, 28orbi12d 746 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
3029notbid 308 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ¬ ((𝑥 +P 𝑤) = (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))))
3121, 30bitr4d 271 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ¬ ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )))
3214, 31syl5bb 272 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ ¬ ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )))
331, 7, 13, 322ecoptocl 7838 . 2 ((𝑓R𝑔R) → (𝑓 <R 𝑔 ↔ ¬ (𝑓 = 𝑔𝑔 <R 𝑓)))
342anbi1d 741 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ (𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R )))
35 breq1 4656 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R𝑓 <R [⟨𝑣, 𝑢⟩] ~R ))
3634, 35imbi12d 334 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ((([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R )))
37 breq1 4656 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R𝑔 <R [⟨𝑣, 𝑢⟩] ~R ))
388, 37anbi12d 747 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ (𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R )))
3938imbi1d 331 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → (((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R )))
40 breq2 4657 . . . . 5 ([⟨𝑣, 𝑢⟩] ~R = → (𝑔 <R [⟨𝑣, 𝑢⟩] ~R𝑔 <R ))
4140anbi2d 740 . . . 4 ([⟨𝑣, 𝑢⟩] ~R = → ((𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R ) ↔ (𝑓 <R 𝑔𝑔 <R )))
42 breq2 4657 . . . 4 ([⟨𝑣, 𝑢⟩] ~R = → (𝑓 <R [⟨𝑣, 𝑢⟩] ~R𝑓 <R ))
4341, 42imbi12d 334 . . 3 ([⟨𝑣, 𝑢⟩] ~R = → (((𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R )))
44 ovex 6678 . . . . . . . . . 10 (𝑥 +P 𝑤) ∈ V
45 ovex 6678 . . . . . . . . . 10 (𝑦 +P 𝑧) ∈ V
46 ltapr 9867 . . . . . . . . . 10 (P → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
47 vex 3203 . . . . . . . . . 10 𝑢 ∈ V
48 addcompr 9843 . . . . . . . . . 10 (𝑓 +P 𝑔) = (𝑔 +P 𝑓)
4944, 45, 46, 47, 48caovord2 6846 . . . . . . . . 9 (𝑢P → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ((𝑥 +P 𝑤) +P 𝑢)<P ((𝑦 +P 𝑧) +P 𝑢)))
50 addasspr 9844 . . . . . . . . . 10 ((𝑥 +P 𝑤) +P 𝑢) = (𝑥 +P (𝑤 +P 𝑢))
51 addasspr 9844 . . . . . . . . . 10 ((𝑦 +P 𝑧) +P 𝑢) = (𝑦 +P (𝑧 +P 𝑢))
5250, 51breq12i 4662 . . . . . . . . 9 (((𝑥 +P 𝑤) +P 𝑢)<P ((𝑦 +P 𝑧) +P 𝑢) ↔ (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)))
5349, 52syl6bb 276 . . . . . . . 8 (𝑢P → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢))))
5414, 53syl5bb 272 . . . . . . 7 (𝑢P → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢))))
55 ltsrpr 9898 . . . . . . . 8 ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣))
56 ltapr 9867 . . . . . . . 8 (𝑦P → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))))
5755, 56syl5bb 272 . . . . . . 7 (𝑦P → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))))
5854, 57bi2anan9r 918 . . . . . 6 ((𝑦P𝑢P) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)) ∧ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)))))
59 ltrelpr 9820 . . . . . . . 8 <P ⊆ (P × P)
6017, 59sotri 5523 . . . . . . 7 (((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)) ∧ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))) → (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)))
61 dmplp 9834 . . . . . . . . 9 dom +P = (P × P)
62 0npr 9814 . . . . . . . . 9 ¬ ∅ ∈ P
63 ltapr 9867 . . . . . . . . 9 (𝑤P → ((𝑥 +P 𝑢)<P (𝑦 +P 𝑣) ↔ (𝑤 +P (𝑥 +P 𝑢))<P (𝑤 +P (𝑦 +P 𝑣))))
6461, 59, 62, 63ndmovordi 6825 . . . . . . . 8 ((𝑤 +P (𝑥 +P 𝑢))<P (𝑤 +P (𝑦 +P 𝑣)) → (𝑥 +P 𝑢)<P (𝑦 +P 𝑣))
65 vex 3203 . . . . . . . . . 10 𝑥 ∈ V
66 vex 3203 . . . . . . . . . 10 𝑤 ∈ V
67 addasspr 9844 . . . . . . . . . 10 ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P ))
6865, 66, 47, 48, 67caov12 6862 . . . . . . . . 9 (𝑥 +P (𝑤 +P 𝑢)) = (𝑤 +P (𝑥 +P 𝑢))
69 vex 3203 . . . . . . . . . 10 𝑦 ∈ V
70 vex 3203 . . . . . . . . . 10 𝑣 ∈ V
7169, 66, 70, 48, 67caov12 6862 . . . . . . . . 9 (𝑦 +P (𝑤 +P 𝑣)) = (𝑤 +P (𝑦 +P 𝑣))
7268, 71breq12i 4662 . . . . . . . 8 ((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)) ↔ (𝑤 +P (𝑥 +P 𝑢))<P (𝑤 +P (𝑦 +P 𝑣)))
73 ltsrpr 9898 . . . . . . . 8 ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑥 +P 𝑢)<P (𝑦 +P 𝑣))
7464, 72, 733imtr4i 281 . . . . . . 7 ((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R )
7560, 74syl 17 . . . . . 6 (((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)) ∧ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R )
7658, 75syl6bi 243 . . . . 5 ((𝑦P𝑢P) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ))
7776ad2ant2l 782 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ))
78773adant2 1080 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ))
791, 36, 39, 43, 783ecoptocl 7839 . 2 ((𝑓R𝑔RR) → ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R ))
8033, 79isso2i 5067 1 <R Or R
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  cop 4183   class class class wbr 4653   Or wor 5034  (class class class)co 6650  [cec 7740  Pcnp 9681   +P cpp 9683  <P cltp 9685   ~R cer 9686  Rcnr 9687   <R cltr 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-plp 9805  df-ltp 9807  df-enr 9877  df-nr 9878  df-ltr 9881
This theorem is referenced by:  1ne0sr  9917  addgt0sr  9925  sqgt0sr  9927  supsrlem  9932  axpre-lttri  9986  axpre-lttrn  9987
  Copyright terms: Public domain W3C validator