MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bi2anan9r Structured version   Visualization version   Unicode version

Theorem bi2anan9r 918
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996.)
Hypotheses
Ref Expression
bi2an9.1  |-  ( ph  ->  ( ps  <->  ch )
)
bi2an9.2  |-  ( th 
->  ( ta  <->  et )
)
Assertion
Ref Expression
bi2anan9r  |-  ( ( th  /\  ph )  ->  ( ( ps  /\  ta )  <->  ( ch  /\  et ) ) )

Proof of Theorem bi2anan9r
StepHypRef Expression
1 bi2an9.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
2 bi2an9.2 . . 3  |-  ( th 
->  ( ta  <->  et )
)
31, 2bi2anan9 917 . 2  |-  ( (
ph  /\  th )  ->  ( ( ps  /\  ta )  <->  ( ch  /\  et ) ) )
43ancoms 469 1  |-  ( ( th  /\  ph )  ->  ( ( ps  /\  ta )  <->  ( ch  /\  et ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  efrn2lp  5096  ltsosr  9915  seqf1olem2  12841  seqf1o  12842  pcval  15549  uspgr2wlkeq  26542  fneval  32347  prtlem5  34145  rmydioph  37581  wepwsolem  37612  aomclem8  37631  sprsymrelfolem2  41743
  Copyright terms: Public domain W3C validator