Proof of Theorem seqf1olem2
| Step | Hyp | Ref
| Expression |
| 1 | | seqf1olem.6 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:(𝑀...(𝑁 + 1))⟶𝐶) |
| 2 | | ffn 6045 |
. . . . . . . . . 10
⊢ (𝐺:(𝑀...(𝑁 + 1))⟶𝐶 → 𝐺 Fn (𝑀...(𝑁 + 1))) |
| 3 | 1, 2 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 Fn (𝑀...(𝑁 + 1))) |
| 4 | | fzssp1 12384 |
. . . . . . . . 9
⊢ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)) |
| 5 | | fnssres 6004 |
. . . . . . . . 9
⊢ ((𝐺 Fn (𝑀...(𝑁 + 1)) ∧ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))) → (𝐺 ↾ (𝑀...𝑁)) Fn (𝑀...𝑁)) |
| 6 | 3, 4, 5 | sylancl 694 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 ↾ (𝑀...𝑁)) Fn (𝑀...𝑁)) |
| 7 | | fzfid 12772 |
. . . . . . . 8
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
| 8 | | fnfi 8238 |
. . . . . . . 8
⊢ (((𝐺 ↾ (𝑀...𝑁)) Fn (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → (𝐺 ↾ (𝑀...𝑁)) ∈ Fin) |
| 9 | 6, 7, 8 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝐺 ↾ (𝑀...𝑁)) ∈ Fin) |
| 10 | | elex 3212 |
. . . . . . 7
⊢ ((𝐺 ↾ (𝑀...𝑁)) ∈ Fin → (𝐺 ↾ (𝑀...𝑁)) ∈ V) |
| 11 | 9, 10 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐺 ↾ (𝑀...𝑁)) ∈ V) |
| 12 | | seqf1o.1 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 13 | | seqf1o.2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 14 | | seqf1o.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 15 | | seqf1o.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 16 | | seqf1o.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ⊆ 𝑆) |
| 17 | | seqf1olem.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1))) |
| 18 | | seqf1olem.7 |
. . . . . . . . 9
⊢ 𝐽 = (𝑘 ∈ (𝑀...𝑁) ↦ (𝐹‘if(𝑘 < 𝐾, 𝑘, (𝑘 + 1)))) |
| 19 | | seqf1olem.8 |
. . . . . . . . 9
⊢ 𝐾 = (◡𝐹‘(𝑁 + 1)) |
| 20 | 12, 13, 14, 15, 16, 17, 1, 18, 19 | seqf1olem1 12840 |
. . . . . . . 8
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 21 | | f1of 6137 |
. . . . . . . 8
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 22 | 20, 21 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 23 | | fex2 7121 |
. . . . . . 7
⊢ ((𝐽:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin ∧ (𝑀...𝑁) ∈ Fin) → 𝐽 ∈ V) |
| 24 | 22, 7, 7, 23 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ V) |
| 25 | 11, 24 | jca 554 |
. . . . 5
⊢ (𝜑 → ((𝐺 ↾ (𝑀...𝑁)) ∈ V ∧ 𝐽 ∈ V)) |
| 26 | | seqf1olem.9 |
. . . . 5
⊢ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))) |
| 27 | | fssres 6070 |
. . . . . . 7
⊢ ((𝐺:(𝑀...(𝑁 + 1))⟶𝐶 ∧ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))) → (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶) |
| 28 | 1, 4, 27 | sylancl 694 |
. . . . . 6
⊢ (𝜑 → (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶) |
| 29 | 20, 28 | jca 554 |
. . . . 5
⊢ (𝜑 → (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶)) |
| 30 | | f1oeq1 6127 |
. . . . . . . 8
⊢ (𝑓 = 𝐽 → (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ↔ 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) |
| 31 | | feq1 6026 |
. . . . . . . 8
⊢ (𝑔 = (𝐺 ↾ (𝑀...𝑁)) → (𝑔:(𝑀...𝑁)⟶𝐶 ↔ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶)) |
| 32 | 30, 31 | bi2anan9r 918 |
. . . . . . 7
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) ↔ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶))) |
| 33 | | coeq1 5279 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝐺 ↾ (𝑀...𝑁)) → (𝑔 ∘ 𝑓) = ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝑓)) |
| 34 | | coeq2 5280 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐽 → ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝑓) = ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)) |
| 35 | 33, 34 | sylan9eq 2676 |
. . . . . . . . . 10
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → (𝑔 ∘ 𝑓) = ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)) |
| 36 | 35 | seqeq3d 12809 |
. . . . . . . . 9
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → seq𝑀( + , (𝑔 ∘ 𝑓)) = seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))) |
| 37 | 36 | fveq1d 6193 |
. . . . . . . 8
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) |
| 38 | | simpl 473 |
. . . . . . . . . 10
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → 𝑔 = (𝐺 ↾ (𝑀...𝑁))) |
| 39 | 38 | seqeq3d 12809 |
. . . . . . . . 9
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → seq𝑀( + , 𝑔) = seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))) |
| 40 | 39 | fveq1d 6193 |
. . . . . . . 8
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → (seq𝑀( + , 𝑔)‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁)) |
| 41 | 37, 40 | eqeq12d 2637 |
. . . . . . 7
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁) ↔ (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁))) |
| 42 | 32, 41 | imbi12d 334 |
. . . . . 6
⊢ ((𝑔 = (𝐺 ↾ (𝑀...𝑁)) ∧ 𝑓 = 𝐽) → (((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) ↔ ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁)))) |
| 43 | 42 | spc2gv 3296 |
. . . . 5
⊢ (((𝐺 ↾ (𝑀...𝑁)) ∈ V ∧ 𝐽 ∈ V) → (∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) → ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁)))) |
| 44 | 25, 26, 29, 43 | syl3c 66 |
. . . 4
⊢ (𝜑 → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁)) |
| 45 | | fvres 6207 |
. . . . . 6
⊢ (𝑥 ∈ (𝑀...𝑁) → ((𝐺 ↾ (𝑀...𝑁))‘𝑥) = (𝐺‘𝑥)) |
| 46 | 45 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘𝑥) = (𝐺‘𝑥)) |
| 47 | 15, 46 | seqfveq 12825 |
. . . 4
⊢ (𝜑 → (seq𝑀( + , (𝐺 ↾ (𝑀...𝑁)))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) |
| 48 | 44, 47 | eqtrd 2656 |
. . 3
⊢ (𝜑 → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) |
| 49 | 48 | oveq1d 6665 |
. 2
⊢ (𝜑 → ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 50 | 12 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 51 | 14 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 52 | | elfzuz3 12339 |
. . . . . . 7
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 53 | 52 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 54 | | eluzp1p1 11713 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → (𝑁 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
| 55 | 53, 54 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝑁 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
| 56 | | elfzuz 12338 |
. . . . . 6
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 57 | 56 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 58 | | f1of 6137 |
. . . . . . . . . 10
⊢ (𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) → 𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1))) |
| 59 | 17, 58 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1))) |
| 60 | | fco 6058 |
. . . . . . . . 9
⊢ ((𝐺:(𝑀...(𝑁 + 1))⟶𝐶 ∧ 𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1))) → (𝐺 ∘ 𝐹):(𝑀...(𝑁 + 1))⟶𝐶) |
| 61 | 1, 59, 60 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 ∘ 𝐹):(𝑀...(𝑁 + 1))⟶𝐶) |
| 62 | 61, 16 | fssd 6057 |
. . . . . . 7
⊢ (𝜑 → (𝐺 ∘ 𝐹):(𝑀...(𝑁 + 1))⟶𝑆) |
| 63 | 62 | ffvelrnda 6359 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘𝑥) ∈ 𝑆) |
| 64 | 63 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) ∧ 𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘𝑥) ∈ 𝑆) |
| 65 | 50, 51, 55, 57, 64 | seqsplit 12834 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)))) |
| 66 | | elfzp12 12419 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))) |
| 67 | 66 | biimpa 501 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁))) |
| 68 | 15, 67 | sylan 488 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁))) |
| 69 | | seqeq1 12804 |
. . . . . . . . . . 11
⊢ (𝐾 = 𝑀 → seq𝐾( + , (𝐺 ∘ 𝐹)) = seq𝑀( + , (𝐺 ∘ 𝐹))) |
| 70 | 69 | eqcomd 2628 |
. . . . . . . . . 10
⊢ (𝐾 = 𝑀 → seq𝑀( + , (𝐺 ∘ 𝐹)) = seq𝐾( + , (𝐺 ∘ 𝐹))) |
| 71 | 70 | fveq1d 6193 |
. . . . . . . . 9
⊢ (𝐾 = 𝑀 → (seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) = (seq𝐾( + , (𝐺 ∘ 𝐹))‘𝐾)) |
| 72 | | f1ocnv 6149 |
. . . . . . . . . . . . 13
⊢ (𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) → ◡𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1))) |
| 73 | | f1of 6137 |
. . . . . . . . . . . . 13
⊢ (◡𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) → ◡𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1))) |
| 74 | 17, 72, 73 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → ◡𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1))) |
| 75 | | peano2uz 11741 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) |
| 76 | | eluzfz2 12349 |
. . . . . . . . . . . . 13
⊢ ((𝑁 + 1) ∈
(ℤ≥‘𝑀) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) |
| 77 | 15, 75, 76 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) |
| 78 | 74, 77 | ffvelrnd 6360 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹‘(𝑁 + 1)) ∈ (𝑀...(𝑁 + 1))) |
| 79 | 19, 78 | syl5eqel 2705 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ (𝑀...(𝑁 + 1))) |
| 80 | | elfzelz 12342 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (𝑀...(𝑁 + 1)) → 𝐾 ∈ ℤ) |
| 81 | | seq1 12814 |
. . . . . . . . . 10
⊢ (𝐾 ∈ ℤ → (seq𝐾( + , (𝐺 ∘ 𝐹))‘𝐾) = ((𝐺 ∘ 𝐹)‘𝐾)) |
| 82 | 79, 80, 81 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (seq𝐾( + , (𝐺 ∘ 𝐹))‘𝐾) = ((𝐺 ∘ 𝐹)‘𝐾)) |
| 83 | 71, 82 | sylan9eqr 2678 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) = ((𝐺 ∘ 𝐹)‘𝐾)) |
| 84 | 83 | oveq1d 6665 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = (((𝐺 ∘ 𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)))) |
| 85 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → 𝐾 = 𝑀) |
| 86 | | eluzfz1 12348 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
| 87 | 15, 86 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
| 88 | 87 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
| 89 | 85, 88 | eqeltrd 2701 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → 𝐾 ∈ (𝑀...𝑁)) |
| 90 | 13 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 91 | 16 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝐶 ⊆ 𝑆) |
| 92 | 61 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐺 ∘ 𝐹):(𝑀...(𝑁 + 1))⟶𝐶) |
| 93 | 79 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝐾 ∈ (𝑀...(𝑁 + 1))) |
| 94 | | peano2uz 11741 |
. . . . . . . . . . 11
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝐾 + 1) ∈
(ℤ≥‘𝑀)) |
| 95 | | fzss1 12380 |
. . . . . . . . . . 11
⊢ ((𝐾 + 1) ∈
(ℤ≥‘𝑀) → ((𝐾 + 1)...(𝑁 + 1)) ⊆ (𝑀...(𝑁 + 1))) |
| 96 | 57, 94, 95 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → ((𝐾 + 1)...(𝑁 + 1)) ⊆ (𝑀...(𝑁 + 1))) |
| 97 | 50, 90, 51, 55, 91, 92, 93, 96 | seqf1olem2a 12839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (((𝐺 ∘ 𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) + ((𝐺 ∘ 𝐹)‘𝐾))) |
| 98 | | 1zzd 11408 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → 1 ∈ ℤ) |
| 99 | | elfzuz 12338 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (𝑀...(𝑁 + 1)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 100 | | fzss1 12380 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
| 101 | 79, 99, 100 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
| 102 | 101 | sselda 3603 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ (𝑀...𝑁)) |
| 103 | 22 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐽‘𝑥) ∈ (𝑀...𝑁)) |
| 104 | 102, 103 | syldan 487 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐽‘𝑥) ∈ (𝑀...𝑁)) |
| 105 | | fvres 6207 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽‘𝑥) ∈ (𝑀...𝑁) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥)) = (𝐺‘(𝐽‘𝑥))) |
| 106 | 104, 105 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥)) = (𝐺‘(𝐽‘𝑥))) |
| 107 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑥 → (𝑘 < 𝐾 ↔ 𝑥 < 𝐾)) |
| 108 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑥 → 𝑘 = 𝑥) |
| 109 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑥 → (𝑘 + 1) = (𝑥 + 1)) |
| 110 | 107, 108,
109 | ifbieq12d 4113 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑥 → if(𝑘 < 𝐾, 𝑘, (𝑘 + 1)) = if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) |
| 111 | 110 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑥 → (𝐹‘if(𝑘 < 𝐾, 𝑘, (𝑘 + 1))) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)))) |
| 112 | | fvex 6201 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) ∈ V |
| 113 | 111, 18, 112 | fvmpt 6282 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (𝑀...𝑁) → (𝐽‘𝑥) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)))) |
| 114 | 102, 113 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐽‘𝑥) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)))) |
| 115 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (𝐾...𝑁) → 𝐾 ≤ 𝑥) |
| 116 | 115 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝐾 ≤ 𝑥) |
| 117 | 79, 80 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 118 | 117 | zred 11482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 119 | 118 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝐾 ∈ ℝ) |
| 120 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (𝐾...𝑁) → 𝑥 ∈ ℤ) |
| 121 | 120 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ ℤ) |
| 122 | 121 | zred 11482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → 𝑥 ∈ ℝ) |
| 123 | 119, 122 | lenltd 10183 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐾 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐾)) |
| 124 | 116, 123 | mpbid 222 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → ¬ 𝑥 < 𝐾) |
| 125 | | iffalse 4095 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑥 < 𝐾 → if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)) = (𝑥 + 1)) |
| 126 | 125 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑥 < 𝐾 → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹‘(𝑥 + 1))) |
| 127 | 124, 126 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹‘(𝑥 + 1))) |
| 128 | 114, 127 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐽‘𝑥) = (𝐹‘(𝑥 + 1))) |
| 129 | 128 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐺‘(𝐽‘𝑥)) = (𝐺‘(𝐹‘(𝑥 + 1)))) |
| 130 | 106, 129 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥)) = (𝐺‘(𝐹‘(𝑥 + 1)))) |
| 131 | | fvco3 6275 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥))) |
| 132 | 22, 131 | sylan 488 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥))) |
| 133 | 102, 132 | syldan 487 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥))) |
| 134 | | fzp1elp1 12394 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝑀...𝑁) → (𝑥 + 1) ∈ (𝑀...(𝑁 + 1))) |
| 135 | 102, 134 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝑥 + 1) ∈ (𝑀...(𝑁 + 1))) |
| 136 | | fvco3 6275 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)) ∧ (𝑥 + 1) ∈ (𝑀...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘(𝑥 + 1)) = (𝐺‘(𝐹‘(𝑥 + 1)))) |
| 137 | 59, 136 | sylan 488 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 + 1) ∈ (𝑀...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘(𝑥 + 1)) = (𝐺‘(𝐹‘(𝑥 + 1)))) |
| 138 | 135, 137 | syldan 487 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → ((𝐺 ∘ 𝐹)‘(𝑥 + 1)) = (𝐺‘(𝐹‘(𝑥 + 1)))) |
| 139 | 130, 133,
138 | 3eqtr4d 2666 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ∘ 𝐹)‘(𝑥 + 1))) |
| 140 | 139 | adantlr 751 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) ∧ 𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ∘ 𝐹)‘(𝑥 + 1))) |
| 141 | 53, 98, 140 | seqshft2 12827 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) |
| 142 | | fvco3 6275 |
. . . . . . . . . . . . 13
⊢ ((𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)) ∧ 𝐾 ∈ (𝑀...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘𝐾) = (𝐺‘(𝐹‘𝐾))) |
| 143 | 59, 79, 142 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐺 ∘ 𝐹)‘𝐾) = (𝐺‘(𝐹‘𝐾))) |
| 144 | 19 | fveq2i 6194 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘𝐾) = (𝐹‘(◡𝐹‘(𝑁 + 1))) |
| 145 | | f1ocnvfv2 6533 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → (𝐹‘(◡𝐹‘(𝑁 + 1))) = (𝑁 + 1)) |
| 146 | 17, 77, 145 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹‘(◡𝐹‘(𝑁 + 1))) = (𝑁 + 1)) |
| 147 | 144, 146 | syl5eq 2668 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘𝐾) = (𝑁 + 1)) |
| 148 | 147 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺‘(𝐹‘𝐾)) = (𝐺‘(𝑁 + 1))) |
| 149 | 143, 148 | eqtr2d 2657 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺‘(𝑁 + 1)) = ((𝐺 ∘ 𝐹)‘𝐾)) |
| 150 | 149 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐺‘(𝑁 + 1)) = ((𝐺 ∘ 𝐹)‘𝐾)) |
| 151 | 141, 150 | oveq12d 6668 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))) = ((seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) + ((𝐺 ∘ 𝐹)‘𝐾))) |
| 152 | 97, 151 | eqtr4d 2659 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (((𝐺 ∘ 𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 153 | 89, 152 | syldan 487 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → (((𝐺 ∘ 𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 154 | 85 | seqeq1d 12807 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)) = seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))) |
| 155 | 154 | fveq1d 6193 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) |
| 156 | 155 | oveq1d 6665 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 157 | 84, 153, 156 | 3eqtrd 2660 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 = 𝑀) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 158 | | eluzel2 11692 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 159 | 15, 158 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 160 | | elfzuz 12338 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) |
| 161 | | eluzp1m1 11711 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈
(ℤ≥‘(𝑀 + 1))) → (𝐾 − 1) ∈
(ℤ≥‘𝑀)) |
| 162 | 159, 160,
161 | syl2an 494 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (𝐾 − 1) ∈
(ℤ≥‘𝑀)) |
| 163 | | eluzelz 11697 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 164 | 15, 163 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 165 | 164 | zcnd 11483 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 166 | | ax-1cn 9994 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℂ |
| 167 | | pncan 10287 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
| 168 | 165, 166,
167 | sylancl 694 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
| 169 | | peano2zm 11420 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈
ℤ) |
| 170 | 79, 80, 169 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐾 − 1) ∈ ℤ) |
| 171 | | elfzuz3 12339 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐾 ∈ (𝑀...(𝑁 + 1)) → (𝑁 + 1) ∈
(ℤ≥‘𝐾)) |
| 172 | 79, 171 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘𝐾)) |
| 173 | 117 | zcnd 11483 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 174 | | npcan 10290 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐾 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐾 −
1) + 1) = 𝐾) |
| 175 | 173, 166,
174 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝐾 − 1) + 1) = 𝐾) |
| 176 | 175 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 →
(ℤ≥‘((𝐾 − 1) + 1)) =
(ℤ≥‘𝐾)) |
| 177 | 172, 176 | eleqtrrd 2704 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘((𝐾 − 1) + 1))) |
| 178 | | eluzp1m1 11711 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐾 − 1) ∈ ℤ ∧
(𝑁 + 1) ∈
(ℤ≥‘((𝐾 − 1) + 1))) → ((𝑁 + 1) − 1) ∈
(ℤ≥‘(𝐾 − 1))) |
| 179 | 170, 177,
178 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑁 + 1) − 1) ∈
(ℤ≥‘(𝐾 − 1))) |
| 180 | 168, 179 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝐾 − 1))) |
| 181 | | fzss2 12381 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁)) |
| 182 | 180, 181 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁)) |
| 183 | 182 | sselda 3603 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (𝑀...𝑁)) |
| 184 | 183, 103 | syldan 487 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐽‘𝑥) ∈ (𝑀...𝑁)) |
| 185 | 184, 105 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥)) = (𝐺‘(𝐽‘𝑥))) |
| 186 | 183, 113 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐽‘𝑥) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)))) |
| 187 | | elfzm11 12411 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ (𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥 ∧ 𝑥 < 𝐾))) |
| 188 | 159, 117,
187 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ (𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥 ∧ 𝑥 < 𝐾))) |
| 189 | 188 | biimpa 501 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥 ∧ 𝑥 < 𝐾)) |
| 190 | 189 | simp3d 1075 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 < 𝐾) |
| 191 | | iftrue 4092 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 < 𝐾 → if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)) = 𝑥) |
| 192 | 191 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 < 𝐾 → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹‘𝑥)) |
| 193 | 190, 192 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹‘𝑥)) |
| 194 | 186, 193 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐽‘𝑥) = (𝐹‘𝑥)) |
| 195 | 194 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐺‘(𝐽‘𝑥)) = (𝐺‘(𝐹‘𝑥))) |
| 196 | 185, 195 | eqtr2d 2657 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐺‘(𝐹‘𝑥)) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥))) |
| 197 | | peano2uz 11741 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘(𝐾 − 1)) → (𝑁 + 1) ∈
(ℤ≥‘(𝐾 − 1))) |
| 198 | | fzss2 12381 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 + 1) ∈
(ℤ≥‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 + 1))) |
| 199 | 180, 197,
198 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 + 1))) |
| 200 | 199 | sselda 3603 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (𝑀...(𝑁 + 1))) |
| 201 | | fvco3 6275 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
| 202 | 59, 201 | sylan 488 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
| 203 | 200, 202 | syldan 487 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
| 204 | 183, 132 | syldan 487 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥))) |
| 205 | 196, 203,
204 | 3eqtr4d 2666 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺 ∘ 𝐹)‘𝑥) = (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥)) |
| 206 | 205 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺 ∘ 𝐹)‘𝑥) = (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥)) |
| 207 | 162, 206 | seqfveq 12825 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) = (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1))) |
| 208 | | fzp1ss 12392 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
| 209 | 15, 158, 208 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
| 210 | 209 | sselda 3603 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝐾 ∈ (𝑀...𝑁)) |
| 211 | 210, 152 | syldan 487 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (((𝐺 ∘ 𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 212 | 207, 211 | oveq12d 6668 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + (((𝐺 ∘ 𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))) |
| 213 | 200, 63 | syldan 487 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺 ∘ 𝐹)‘𝑥) ∈ 𝑆) |
| 214 | 213 | adantlr 751 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → ((𝐺 ∘ 𝐹)‘𝑥) ∈ 𝑆) |
| 215 | 12 | adantlr 751 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 216 | 162, 214,
215 | seqcl 12821 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) ∈ 𝑆) |
| 217 | 61, 79 | ffvelrnd 6360 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐺 ∘ 𝐹)‘𝐾) ∈ 𝐶) |
| 218 | 16, 217 | sseldd 3604 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐺 ∘ 𝐹)‘𝐾) ∈ 𝑆) |
| 219 | 218 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((𝐺 ∘ 𝐹)‘𝐾) ∈ 𝑆) |
| 220 | 96 | sselda 3603 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) ∧ 𝑥 ∈ ((𝐾 + 1)...(𝑁 + 1))) → 𝑥 ∈ (𝑀...(𝑁 + 1))) |
| 221 | 220, 64 | syldan 487 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) ∧ 𝑥 ∈ ((𝐾 + 1)...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘𝑥) ∈ 𝑆) |
| 222 | 55, 221, 50 | seqcl 12821 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) ∈ 𝑆) |
| 223 | 210, 222 | syldan 487 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) ∈ 𝑆) |
| 224 | 216, 219,
223 | 3jca 1242 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) ∈ 𝑆 ∧ ((𝐺 ∘ 𝐹)‘𝐾) ∈ 𝑆 ∧ (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) ∈ 𝑆)) |
| 225 | 14 | caovassg 6832 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) ∈ 𝑆 ∧ ((𝐺 ∘ 𝐹)‘𝐾) ∈ 𝑆 ∧ (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) ∈ 𝑆)) → (((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + ((𝐺 ∘ 𝐹)‘𝐾)) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + (((𝐺 ∘ 𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))))) |
| 226 | 224, 225 | syldan 487 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + ((𝐺 ∘ 𝐹)‘𝐾)) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + (((𝐺 ∘ 𝐹)‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))))) |
| 227 | 1, 16 | fssd 6057 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐺:(𝑀...(𝑁 + 1))⟶𝑆) |
| 228 | | fssres 6070 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺:(𝑀...(𝑁 + 1))⟶𝑆 ∧ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))) → (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝑆) |
| 229 | 227, 4, 228 | sylancl 694 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝑆) |
| 230 | | fco 6058 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ↾ (𝑀...𝑁)):(𝑀...𝑁)⟶𝑆 ∧ 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) → ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽):(𝑀...𝑁)⟶𝑆) |
| 231 | 229, 22, 230 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽):(𝑀...𝑁)⟶𝑆) |
| 232 | 231 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆) |
| 233 | 183, 232 | syldan 487 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆) |
| 234 | 233 | adantlr 751 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆) |
| 235 | 162, 234,
215 | seqcl 12821 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) ∈ 𝑆) |
| 236 | | elfzuz3 12339 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 237 | 236 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 238 | 102, 232 | syldan 487 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆) |
| 239 | 238 | adantlr 751 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝐾...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆) |
| 240 | 237, 239,
215 | seqcl 12821 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) ∈ 𝑆) |
| 241 | 227, 77 | ffvelrnd 6360 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺‘(𝑁 + 1)) ∈ 𝑆) |
| 242 | 241 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (𝐺‘(𝑁 + 1)) ∈ 𝑆) |
| 243 | 235, 240,
242 | 3jca 1242 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) ∈ 𝑆 ∧ (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) ∈ 𝑆 ∧ (𝐺‘(𝑁 + 1)) ∈ 𝑆)) |
| 244 | 14 | caovassg 6832 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) ∈ 𝑆 ∧ (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) ∈ 𝑆 ∧ (𝐺‘(𝑁 + 1)) ∈ 𝑆)) → (((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) + (𝐺‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))) |
| 245 | 243, 244 | syldan 487 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) + (𝐺‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + ((seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))))) |
| 246 | 212, 226,
245 | 3eqtr4d 2666 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + ((𝐺 ∘ 𝐹)‘𝐾)) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = (((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) + (𝐺‘(𝑁 + 1)))) |
| 247 | | seqm1 12818 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈
(ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) = ((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + ((𝐺 ∘ 𝐹)‘𝐾))) |
| 248 | 159, 160,
247 | syl2an 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) = ((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + ((𝐺 ∘ 𝐹)‘𝐾))) |
| 249 | 248 | oveq1d 6665 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = (((seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝐾 − 1)) + ((𝐺 ∘ 𝐹)‘𝐾)) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)))) |
| 250 | 14 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 251 | | elfzelz 12342 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝐾 ∈ ℤ) |
| 252 | 251 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝐾 ∈ ℤ) |
| 253 | 252 | zcnd 11483 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝐾 ∈ ℂ) |
| 254 | 253, 166,
174 | sylancl 694 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((𝐾 − 1) + 1) = 𝐾) |
| 255 | 254 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) →
(ℤ≥‘((𝐾 − 1) + 1)) =
(ℤ≥‘𝐾)) |
| 256 | 237, 255 | eleqtrrd 2704 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → 𝑁 ∈
(ℤ≥‘((𝐾 − 1) + 1))) |
| 257 | 232 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) ∈ 𝑆) |
| 258 | 215, 250,
256, 162, 257 | seqsplit 12834 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁))) |
| 259 | 254 | seqeq1d 12807 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → seq((𝐾 − 1) + 1)( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)) = seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))) |
| 260 | 259 | fveq1d 6193 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq((𝐾 − 1) + 1)( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) |
| 261 | 260 | oveq2d 6666 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq((𝐾 − 1) + 1)( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁))) |
| 262 | 258, 261 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁))) |
| 263 | 262 | oveq1d 6665 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1))) = (((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘(𝐾 − 1)) + (seq𝐾( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) + (𝐺‘(𝑁 + 1)))) |
| 264 | 246, 249,
263 | 3eqtr4d 2666 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 265 | 157, 264 | jaodan 826 |
. . . . 5
⊢ ((𝜑 ∧ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁))) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 266 | 68, 265 | syldan 487 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝐾) + (seq(𝐾 + 1)( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 267 | 65, 266 | eqtrd 2656 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ (𝑀...𝑁)) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 268 | 15 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 269 | | seqp1 12816 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝑁) + ((𝐺 ∘ 𝐹)‘(𝑁 + 1)))) |
| 270 | 268, 269 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝑁) + ((𝐺 ∘ 𝐹)‘(𝑁 + 1)))) |
| 271 | 113 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐽‘𝑥) = (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1)))) |
| 272 | | elfzelz 12342 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) |
| 273 | 272 | zred 11482 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ) |
| 274 | 273 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ) |
| 275 | 164 | zred 11482 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 276 | 275 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℝ) |
| 277 | | peano2re 10209 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈
ℝ) |
| 278 | 276, 277 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑁 + 1) ∈ ℝ) |
| 279 | | elfzle2 12345 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ≤ 𝑁) |
| 280 | 279 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ≤ 𝑁) |
| 281 | 276 | ltp1d 10954 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 < (𝑁 + 1)) |
| 282 | 274, 276,
278, 280, 281 | lelttrd 10195 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 < (𝑁 + 1)) |
| 283 | 282 | adantlr 751 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 < (𝑁 + 1)) |
| 284 | | simplr 792 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 = (𝑁 + 1)) |
| 285 | 283, 284 | breqtrrd 4681 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 < 𝐾) |
| 286 | 285, 192 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘if(𝑥 < 𝐾, 𝑥, (𝑥 + 1))) = (𝐹‘𝑥)) |
| 287 | 271, 286 | eqtrd 2656 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐽‘𝑥) = (𝐹‘𝑥)) |
| 288 | 287 | fveq2d 6195 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥)) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐹‘𝑥))) |
| 289 | 273 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ) |
| 290 | 289, 285 | gtned 10172 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ≠ 𝑥) |
| 291 | 59 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1))) |
| 292 | | fzelp1 12393 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (𝑀...(𝑁 + 1))) |
| 293 | 292 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ (𝑀...(𝑁 + 1))) |
| 294 | 291, 293 | ffvelrnd 6360 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ (𝑀...(𝑁 + 1))) |
| 295 | 15 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 296 | | elfzp1 12391 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((𝐹‘𝑥) ∈ (𝑀...(𝑁 + 1)) ↔ ((𝐹‘𝑥) ∈ (𝑀...𝑁) ∨ (𝐹‘𝑥) = (𝑁 + 1)))) |
| 297 | 295, 296 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹‘𝑥) ∈ (𝑀...(𝑁 + 1)) ↔ ((𝐹‘𝑥) ∈ (𝑀...𝑁) ∨ (𝐹‘𝑥) = (𝑁 + 1)))) |
| 298 | 294, 297 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹‘𝑥) ∈ (𝑀...𝑁) ∨ (𝐹‘𝑥) = (𝑁 + 1))) |
| 299 | 298 | ord 392 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (¬ (𝐹‘𝑥) ∈ (𝑀...𝑁) → (𝐹‘𝑥) = (𝑁 + 1))) |
| 300 | 17 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1))) |
| 301 | | f1ocnvfv 6534 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...(𝑁 + 1))) → ((𝐹‘𝑥) = (𝑁 + 1) → (◡𝐹‘(𝑁 + 1)) = 𝑥)) |
| 302 | 300, 293,
301 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹‘𝑥) = (𝑁 + 1) → (◡𝐹‘(𝑁 + 1)) = 𝑥)) |
| 303 | 19 | eqeq1i 2627 |
. . . . . . . . . . . . 13
⊢ (𝐾 = 𝑥 ↔ (◡𝐹‘(𝑁 + 1)) = 𝑥) |
| 304 | 302, 303 | syl6ibr 242 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹‘𝑥) = (𝑁 + 1) → 𝐾 = 𝑥)) |
| 305 | 299, 304 | syld 47 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (¬ (𝐹‘𝑥) ∈ (𝑀...𝑁) → 𝐾 = 𝑥)) |
| 306 | 305 | necon1ad 2811 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾 ≠ 𝑥 → (𝐹‘𝑥) ∈ (𝑀...𝑁))) |
| 307 | 290, 306 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ (𝑀...𝑁)) |
| 308 | | fvres 6207 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥) ∈ (𝑀...𝑁) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐹‘𝑥)) = (𝐺‘(𝐹‘𝑥))) |
| 309 | 307, 308 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ↾ (𝑀...𝑁))‘(𝐹‘𝑥)) = (𝐺‘(𝐹‘𝑥))) |
| 310 | 288, 309 | eqtr2d 2657 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘(𝐹‘𝑥)) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥))) |
| 311 | 59, 292, 201 | syl2an 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
| 312 | 311 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
| 313 | 132 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥) = ((𝐺 ↾ (𝑀...𝑁))‘(𝐽‘𝑥))) |
| 314 | 310, 312,
313 | 3eqtr4d 2666 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 = (𝑁 + 1)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐺 ∘ 𝐹)‘𝑥) = (((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽)‘𝑥)) |
| 315 | 268, 314 | seqfveq 12825 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘𝑁) = (seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁)) |
| 316 | | fvco3 6275 |
. . . . . . . 8
⊢ ((𝐹:(𝑀...(𝑁 + 1))⟶(𝑀...(𝑁 + 1)) ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → ((𝐺 ∘ 𝐹)‘(𝑁 + 1)) = (𝐺‘(𝐹‘(𝑁 + 1)))) |
| 317 | 59, 77, 316 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 ∘ 𝐹)‘(𝑁 + 1)) = (𝐺‘(𝐹‘(𝑁 + 1)))) |
| 318 | 317 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → ((𝐺 ∘ 𝐹)‘(𝑁 + 1)) = (𝐺‘(𝐹‘(𝑁 + 1)))) |
| 319 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → 𝐾 = (𝑁 + 1)) |
| 320 | 19, 319 | syl5eqr 2670 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → (◡𝐹‘(𝑁 + 1)) = (𝑁 + 1)) |
| 321 | 320 | fveq2d 6195 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → (𝐹‘(◡𝐹‘(𝑁 + 1))) = (𝐹‘(𝑁 + 1))) |
| 322 | 146 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → (𝐹‘(◡𝐹‘(𝑁 + 1))) = (𝑁 + 1)) |
| 323 | 321, 322 | eqtr3d 2658 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → (𝐹‘(𝑁 + 1)) = (𝑁 + 1)) |
| 324 | 323 | fveq2d 6195 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → (𝐺‘(𝐹‘(𝑁 + 1))) = (𝐺‘(𝑁 + 1))) |
| 325 | 318, 324 | eqtrd 2656 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → ((𝐺 ∘ 𝐹)‘(𝑁 + 1)) = (𝐺‘(𝑁 + 1))) |
| 326 | 315, 325 | oveq12d 6668 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → ((seq𝑀( + , (𝐺 ∘ 𝐹))‘𝑁) + ((𝐺 ∘ 𝐹)‘(𝑁 + 1))) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 327 | 270, 326 | eqtrd 2656 |
. . 3
⊢ ((𝜑 ∧ 𝐾 = (𝑁 + 1)) → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 328 | | elfzp1 12391 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1)))) |
| 329 | 15, 328 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1)))) |
| 330 | 79, 329 | mpbid 222 |
. . 3
⊢ (𝜑 → (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1))) |
| 331 | 267, 327,
330 | mpjaodan 827 |
. 2
⊢ (𝜑 → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) = ((seq𝑀( + , ((𝐺 ↾ (𝑀...𝑁)) ∘ 𝐽))‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 332 | | seqp1 12816 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐺)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 333 | 15, 332 | syl 17 |
. 2
⊢ (𝜑 → (seq𝑀( + , 𝐺)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘(𝑁 + 1)))) |
| 334 | 49, 331, 333 | 3eqtr4d 2666 |
1
⊢ (𝜑 → (seq𝑀( + , (𝐺 ∘ 𝐹))‘(𝑁 + 1)) = (seq𝑀( + , 𝐺)‘(𝑁 + 1))) |