Step | Hyp | Ref
| Expression |
1 | | seqf1o.6 |
. . 3
⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
2 | | seqf1o.7 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝐶) |
3 | | eqid 2622 |
. . . 4
⊢ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) |
4 | 2, 3 | fmptd 6385 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶) |
5 | | seqf1o.4 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
6 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑀 → (𝑀...𝑥) = (𝑀...𝑀)) |
7 | | f1oeq23 6130 |
. . . . . . . . . . 11
⊢ (((𝑀...𝑥) = (𝑀...𝑀) ∧ (𝑀...𝑥) = (𝑀...𝑀)) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀))) |
8 | 6, 6, 7 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀))) |
9 | 6 | feq2d 6031 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (𝑔:(𝑀...𝑥)⟶𝐶 ↔ 𝑔:(𝑀...𝑀)⟶𝐶)) |
10 | 8, 9 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶))) |
11 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀)) |
12 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘𝑀)) |
13 | 11, 12 | eqeq12d 2637 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))) |
14 | 10, 13 | imbi12d 334 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)))) |
15 | 14 | 2albidv 1851 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔∀𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)))) |
16 | 15 | imbi2d 330 |
. . . . . 6
⊢ (𝑥 = 𝑀 → ((𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))))) |
17 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑘 → (𝑀...𝑥) = (𝑀...𝑘)) |
18 | | f1oeq23 6130 |
. . . . . . . . . . 11
⊢ (((𝑀...𝑥) = (𝑀...𝑘) ∧ (𝑀...𝑥) = (𝑀...𝑘)) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘))) |
19 | 17, 17, 18 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘))) |
20 | 17 | feq2d 6031 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → (𝑔:(𝑀...𝑥)⟶𝐶 ↔ 𝑔:(𝑀...𝑘)⟶𝐶)) |
21 | 19, 20 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑥 = 𝑘 → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶))) |
22 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘)) |
23 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘𝑘)) |
24 | 22, 23 | eqeq12d 2637 |
. . . . . . . . 9
⊢ (𝑥 = 𝑘 → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) |
25 | 21, 24 | imbi12d 334 |
. . . . . . . 8
⊢ (𝑥 = 𝑘 → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)))) |
26 | 25 | 2albidv 1851 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)))) |
27 | 26 | imbi2d 330 |
. . . . . 6
⊢ (𝑥 = 𝑘 → ((𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))))) |
28 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑘 + 1) → (𝑀...𝑥) = (𝑀...(𝑘 + 1))) |
29 | | f1oeq23 6130 |
. . . . . . . . . . 11
⊢ (((𝑀...𝑥) = (𝑀...(𝑘 + 1)) ∧ (𝑀...𝑥) = (𝑀...(𝑘 + 1))) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)))) |
30 | 28, 28, 29 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑘 + 1) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)))) |
31 | 28 | feq2d 6031 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑘 + 1) → (𝑔:(𝑀...𝑥)⟶𝐶 ↔ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) |
32 | 30, 31 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑥 = (𝑘 + 1) → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶))) |
33 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑘 + 1) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1))) |
34 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑘 + 1) → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))) |
35 | 33, 34 | eqeq12d 2637 |
. . . . . . . . 9
⊢ (𝑥 = (𝑘 + 1) → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))) |
36 | 32, 35 | imbi12d 334 |
. . . . . . . 8
⊢ (𝑥 = (𝑘 + 1) → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) |
37 | 36 | 2albidv 1851 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) |
38 | 37 | imbi2d 330 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → ((𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))) |
39 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑁 → (𝑀...𝑥) = (𝑀...𝑁)) |
40 | | f1oeq23 6130 |
. . . . . . . . . . 11
⊢ (((𝑀...𝑥) = (𝑀...𝑁) ∧ (𝑀...𝑥) = (𝑀...𝑁)) → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) |
41 | 39, 39, 40 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑁 → (𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ↔ 𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) |
42 | 39 | feq2d 6031 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑁 → (𝑔:(𝑀...𝑥)⟶𝐶 ↔ 𝑔:(𝑀...𝑁)⟶𝐶)) |
43 | 41, 42 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑥 = 𝑁 → ((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) ↔ (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶))) |
44 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑁 → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁)) |
45 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑁 → (seq𝑀( + , 𝑔)‘𝑥) = (seq𝑀( + , 𝑔)‘𝑁)) |
46 | 44, 45 | eqeq12d 2637 |
. . . . . . . . 9
⊢ (𝑥 = 𝑁 → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥) ↔ (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))) |
47 | 43, 46 | imbi12d 334 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))) |
48 | 47 | 2albidv 1851 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥)) ↔ ∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))) |
49 | 48 | imbi2d 330 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑥)–1-1-onto→(𝑀...𝑥) ∧ 𝑔:(𝑀...𝑥)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑥) = (seq𝑀( + , 𝑔)‘𝑥))) ↔ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))))) |
50 | | f1of 6137 |
. . . . . . . . . . . . 13
⊢ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) → 𝑓:(𝑀...𝑀)⟶(𝑀...𝑀)) |
51 | 50 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → 𝑓:(𝑀...𝑀)⟶(𝑀...𝑀)) |
52 | | elfz3 12351 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) |
53 | | fvco3 6275 |
. . . . . . . . . . . 12
⊢ ((𝑓:(𝑀...𝑀)⟶(𝑀...𝑀) ∧ 𝑀 ∈ (𝑀...𝑀)) → ((𝑔 ∘ 𝑓)‘𝑀) = (𝑔‘(𝑓‘𝑀))) |
54 | 51, 52, 53 | syl2anr 495 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → ((𝑔 ∘ 𝑓)‘𝑀) = (𝑔‘(𝑓‘𝑀))) |
55 | | ffvelrn 6357 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(𝑀...𝑀)⟶(𝑀...𝑀) ∧ 𝑀 ∈ (𝑀...𝑀)) → (𝑓‘𝑀) ∈ (𝑀...𝑀)) |
56 | 50, 52, 55 | syl2anr 495 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀)) → (𝑓‘𝑀) ∈ (𝑀...𝑀)) |
57 | | fzsn 12383 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
58 | 57 | eleq2d 2687 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℤ → ((𝑓‘𝑀) ∈ (𝑀...𝑀) ↔ (𝑓‘𝑀) ∈ {𝑀})) |
59 | | elsni 4194 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓‘𝑀) ∈ {𝑀} → (𝑓‘𝑀) = 𝑀) |
60 | 58, 59 | syl6bi 243 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℤ → ((𝑓‘𝑀) ∈ (𝑀...𝑀) → (𝑓‘𝑀) = 𝑀)) |
61 | 60 | imp 445 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ (𝑓‘𝑀) ∈ (𝑀...𝑀)) → (𝑓‘𝑀) = 𝑀) |
62 | 56, 61 | syldan 487 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀)) → (𝑓‘𝑀) = 𝑀) |
63 | 62 | adantrr 753 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (𝑓‘𝑀) = 𝑀) |
64 | 63 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (𝑔‘(𝑓‘𝑀)) = (𝑔‘𝑀)) |
65 | 54, 64 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → ((𝑔 ∘ 𝑓)‘𝑀) = (𝑔‘𝑀)) |
66 | | seq1 12814 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = ((𝑔 ∘ 𝑓)‘𝑀)) |
67 | 66 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = ((𝑔 ∘ 𝑓)‘𝑀)) |
68 | | seq1 12814 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝑔)‘𝑀) = (𝑔‘𝑀)) |
69 | 68 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (seq𝑀( + , 𝑔)‘𝑀) = (𝑔‘𝑀)) |
70 | 65, 67, 69 | 3eqtr4d 2666 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ (𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶)) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)) |
71 | 70 | ex 450 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → ((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))) |
72 | 71 | alrimivv 1856 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ →
∀𝑔∀𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀))) |
73 | 72 | a1d 25 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑀)–1-1-onto→(𝑀...𝑀) ∧ 𝑔:(𝑀...𝑀)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑀) = (seq𝑀( + , 𝑔)‘𝑀)))) |
74 | | f1oeq1 6127 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑡 → (𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ↔ 𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘))) |
75 | | feq1 6026 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑠 → (𝑔:(𝑀...𝑘)⟶𝐶 ↔ 𝑠:(𝑀...𝑘)⟶𝐶)) |
76 | 74, 75 | bi2anan9r 918 |
. . . . . . . . . . 11
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → ((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) ↔ (𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶))) |
77 | | coeq1 5279 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑠 → (𝑔 ∘ 𝑓) = (𝑠 ∘ 𝑓)) |
78 | | coeq2 5280 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑡 → (𝑠 ∘ 𝑓) = (𝑠 ∘ 𝑡)) |
79 | 77, 78 | sylan9eq 2676 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → (𝑔 ∘ 𝑓) = (𝑠 ∘ 𝑡)) |
80 | 79 | seqeq3d 12809 |
. . . . . . . . . . . . 13
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → seq𝑀( + , (𝑔 ∘ 𝑓)) = seq𝑀( + , (𝑠 ∘ 𝑡))) |
81 | 80 | fveq1d 6193 |
. . . . . . . . . . . 12
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘)) |
82 | | simpl 473 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → 𝑔 = 𝑠) |
83 | 82 | seqeq3d 12809 |
. . . . . . . . . . . . 13
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → seq𝑀( + , 𝑔) = seq𝑀( + , 𝑠)) |
84 | 83 | fveq1d 6193 |
. . . . . . . . . . . 12
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → (seq𝑀( + , 𝑔)‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) |
85 | 81, 84 | eqeq12d 2637 |
. . . . . . . . . . 11
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘) ↔ (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘))) |
86 | 76, 85 | imbi12d 334 |
. . . . . . . . . 10
⊢ ((𝑔 = 𝑠 ∧ 𝑓 = 𝑡) → (((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) ↔ ((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)))) |
87 | 86 | cbval2v 2285 |
. . . . . . . . 9
⊢
(∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) ↔ ∀𝑠∀𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘))) |
88 | | simplll 798 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝜑) |
89 | | seqf1o.1 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
90 | 88, 89 | sylan 488 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈
(ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
91 | | seqf1o.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
92 | 88, 91 | sylan 488 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈
(ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
93 | | seqf1o.3 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
94 | 88, 93 | sylan 488 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈
(ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
95 | | simpllr 799 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
96 | | seqf1o.5 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐶 ⊆ 𝑆) |
97 | 88, 96 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝐶 ⊆ 𝑆) |
98 | | simprl 794 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1))) |
99 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) |
100 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ (𝑀...𝑘) ↦ (𝑓‘if(𝑤 < (◡𝑓‘(𝑘 + 1)), 𝑤, (𝑤 + 1)))) = (𝑤 ∈ (𝑀...𝑘) ↦ (𝑓‘if(𝑤 < (◡𝑓‘(𝑘 + 1)), 𝑤, (𝑤 + 1)))) |
101 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (◡𝑓‘(𝑘 + 1)) = (◡𝑓‘(𝑘 + 1)) |
102 | | simplr 792 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) |
103 | 102, 87 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → ∀𝑠∀𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘))) |
104 | 90, 92, 94, 95, 97, 98, 99, 100, 101, 103 | seqf1olem2 12841 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) ∧ (𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶)) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))) |
105 | 104 | exp31 630 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) → ((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) |
106 | 87, 105 | syl5bir 233 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (∀𝑠∀𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) → ((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) |
107 | 106 | alrimdv 1857 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (∀𝑠∀𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) → ∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) |
108 | 107 | alrimdv 1857 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (∀𝑠∀𝑡((𝑡:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑠:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑠 ∘ 𝑡))‘𝑘) = (seq𝑀( + , 𝑠)‘𝑘)) → ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) |
109 | 87, 108 | syl5bi 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) → ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1))))) |
110 | 109 | expcom 451 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜑 → (∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘)) → ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))) |
111 | 110 | a2d 29 |
. . . . . 6
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → ((𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑘)–1-1-onto→(𝑀...𝑘) ∧ 𝑔:(𝑀...𝑘)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑘) = (seq𝑀( + , 𝑔)‘𝑘))) → (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...(𝑘 + 1))–1-1-onto→(𝑀...(𝑘 + 1)) ∧ 𝑔:(𝑀...(𝑘 + 1))⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘(𝑘 + 1)) = (seq𝑀( + , 𝑔)‘(𝑘 + 1)))))) |
112 | 16, 27, 38, 49, 73, 111 | uzind4 11746 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))) |
113 | 5, 112 | mpcom 38 |
. . . 4
⊢ (𝜑 → ∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁))) |
114 | | fvex 6201 |
. . . . . . 7
⊢ (𝐺‘𝑥) ∈ V |
115 | 114, 3 | fnmpti 6022 |
. . . . . 6
⊢ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) Fn (𝑀...𝑁) |
116 | | fzfi 12771 |
. . . . . 6
⊢ (𝑀...𝑁) ∈ Fin |
117 | | fnfi 8238 |
. . . . . 6
⊢ (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) Fn (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∈ Fin) |
118 | 115, 116,
117 | mp2an 708 |
. . . . 5
⊢ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∈ Fin |
119 | | f1of 6137 |
. . . . . . 7
⊢ (𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐹:(𝑀...𝑁)⟶(𝑀...𝑁)) |
120 | 1, 119 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶(𝑀...𝑁)) |
121 | | ovexd 6680 |
. . . . . 6
⊢ (𝜑 → (𝑀...𝑁) ∈ V) |
122 | | fex2 7121 |
. . . . . 6
⊢ ((𝐹:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ V ∧ (𝑀...𝑁) ∈ V) → 𝐹 ∈ V) |
123 | 120, 121,
121, 122 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ V) |
124 | | f1oeq1 6127 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ↔ 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) |
125 | | feq1 6026 |
. . . . . . . 8
⊢ (𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) → (𝑔:(𝑀...𝑁)⟶𝐶 ↔ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶)) |
126 | 124, 125 | bi2anan9r 918 |
. . . . . . 7
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) ↔ (𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶))) |
127 | | coeq1 5279 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) → (𝑔 ∘ 𝑓) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝑓)) |
128 | | coeq2 5280 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝑓) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹)) |
129 | 127, 128 | sylan9eq 2676 |
. . . . . . . . . 10
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → (𝑔 ∘ 𝑓) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹)) |
130 | 129 | seqeq3d 12809 |
. . . . . . . . 9
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → seq𝑀( + , (𝑔 ∘ 𝑓)) = seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))) |
131 | 130 | fveq1d 6193 |
. . . . . . . 8
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁)) |
132 | | simpl 473 |
. . . . . . . . . 10
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → 𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))) |
133 | 132 | seqeq3d 12809 |
. . . . . . . . 9
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → seq𝑀( + , 𝑔) = seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))) |
134 | 133 | fveq1d 6193 |
. . . . . . . 8
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → (seq𝑀( + , 𝑔)‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁)) |
135 | 131, 134 | eqeq12d 2637 |
. . . . . . 7
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → ((seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁) ↔ (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁))) |
136 | 126, 135 | imbi12d 334 |
. . . . . 6
⊢ ((𝑔 = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∧ 𝑓 = 𝐹) → (((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) ↔ ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁)))) |
137 | 136 | spc2gv 3296 |
. . . . 5
⊢ (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∈ Fin ∧ 𝐹 ∈ V) → (∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) → ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁)))) |
138 | 118, 123,
137 | sylancr 695 |
. . . 4
⊢ (𝜑 → (∀𝑔∀𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔 ∘ 𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)) → ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁)))) |
139 | 113, 138 | mpd 15 |
. . 3
⊢ (𝜑 → ((𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)):(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁))) |
140 | 1, 4, 139 | mp2and 715 |
. 2
⊢ (𝜑 → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁)) |
141 | 120 | ffvelrnda 6359 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ (𝑀...𝑁)) |
142 | | fveq2 6191 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑘) → (𝐺‘𝑥) = (𝐺‘(𝐹‘𝑘))) |
143 | | fvex 6201 |
. . . . . 6
⊢ (𝐺‘(𝐹‘𝑘)) ∈ V |
144 | 142, 3, 143 | fvmpt 6282 |
. . . . 5
⊢ ((𝐹‘𝑘) ∈ (𝑀...𝑁) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘(𝐹‘𝑘)) = (𝐺‘(𝐹‘𝑘))) |
145 | 141, 144 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘(𝐹‘𝑘)) = (𝐺‘(𝐹‘𝑘))) |
146 | | fvco3 6275 |
. . . . 5
⊢ ((𝐹:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ 𝑘 ∈ (𝑀...𝑁)) → (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘(𝐹‘𝑘))) |
147 | 120, 146 | sylan 488 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘(𝐹‘𝑘))) |
148 | | seqf1o.8 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = (𝐺‘(𝐹‘𝑘))) |
149 | 145, 147,
148 | 3eqtr4d 2666 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹)‘𝑘) = (𝐻‘𝑘)) |
150 | 5, 149 | seqfveq 12825 |
. 2
⊢ (𝜑 → (seq𝑀( + , ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)) ∘ 𝐹))‘𝑁) = (seq𝑀( + , 𝐻)‘𝑁)) |
151 | | fveq2 6191 |
. . . . 5
⊢ (𝑥 = 𝑘 → (𝐺‘𝑥) = (𝐺‘𝑘)) |
152 | | fvex 6201 |
. . . . 5
⊢ (𝐺‘𝑘) ∈ V |
153 | 151, 3, 152 | fvmpt 6282 |
. . . 4
⊢ (𝑘 ∈ (𝑀...𝑁) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘𝑘) = (𝐺‘𝑘)) |
154 | 153 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥))‘𝑘) = (𝐺‘𝑘)) |
155 | 5, 154 | seqfveq 12825 |
. 2
⊢ (𝜑 → (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐺‘𝑥)))‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) |
156 | 140, 150,
155 | 3eqtr3d 2664 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) |