Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restb Structured version   Visualization version   GIF version

Theorem bj-restb 33047
Description: An elementwise intersection by a set on a family containing a superset of that set contains that set. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restb (𝑋𝑉 → ((𝐴𝐵𝐵𝑋) → 𝐴 ∈ (𝑋t 𝐴)))

Proof of Theorem bj-restb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . 8 (𝐴𝐵𝐴𝐵)
2 ssid 3624 . . . . . . . . 9 𝐴𝐴
32a1i 11 . . . . . . . 8 (𝐴𝐵𝐴𝐴)
41, 3ssind 3837 . . . . . . 7 (𝐴𝐵𝐴 ⊆ (𝐵𝐴))
5 inss2 3834 . . . . . . . 8 (𝐵𝐴) ⊆ 𝐴
65a1i 11 . . . . . . 7 (𝐴𝐵 → (𝐵𝐴) ⊆ 𝐴)
74, 6eqssd 3620 . . . . . 6 (𝐴𝐵𝐴 = (𝐵𝐴))
8 eleq1 2689 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦𝑋𝐵𝑋))
9 ineq1 3807 . . . . . . . . . . 11 (𝑦 = 𝐵 → (𝑦𝐴) = (𝐵𝐴))
109eqeq2d 2632 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝐴 = (𝑦𝐴) ↔ 𝐴 = (𝐵𝐴)))
118, 10anbi12d 747 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑦𝑋𝐴 = (𝑦𝐴)) ↔ (𝐵𝑋𝐴 = (𝐵𝐴))))
1211spcegv 3294 . . . . . . . 8 (𝐵𝑋 → ((𝐵𝑋𝐴 = (𝐵𝐴)) → ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴))))
1312expd 452 . . . . . . 7 (𝐵𝑋 → (𝐵𝑋 → (𝐴 = (𝐵𝐴) → ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴)))))
1413pm2.43i 52 . . . . . 6 (𝐵𝑋 → (𝐴 = (𝐵𝐴) → ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴))))
157, 14mpan9 486 . . . . 5 ((𝐴𝐵𝐵𝑋) → ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴)))
16 df-rex 2918 . . . . 5 (∃𝑦𝑋 𝐴 = (𝑦𝐴) ↔ ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴)))
1715, 16sylibr 224 . . . 4 ((𝐴𝐵𝐵𝑋) → ∃𝑦𝑋 𝐴 = (𝑦𝐴))
1817adantl 482 . . 3 ((𝑋𝑉 ∧ (𝐴𝐵𝐵𝑋)) → ∃𝑦𝑋 𝐴 = (𝑦𝐴))
19 ssexg 4804 . . . 4 ((𝐴𝐵𝐵𝑋) → 𝐴 ∈ V)
20 elrest 16088 . . . 4 ((𝑋𝑉𝐴 ∈ V) → (𝐴 ∈ (𝑋t 𝐴) ↔ ∃𝑦𝑋 𝐴 = (𝑦𝐴)))
2119, 20sylan2 491 . . 3 ((𝑋𝑉 ∧ (𝐴𝐵𝐵𝑋)) → (𝐴 ∈ (𝑋t 𝐴) ↔ ∃𝑦𝑋 𝐴 = (𝑦𝐴)))
2218, 21mpbird 247 . 2 ((𝑋𝑉 ∧ (𝐴𝐵𝐵𝑋)) → 𝐴 ∈ (𝑋t 𝐴))
2322ex 450 1 (𝑋𝑉 → ((𝐴𝐵𝐵𝑋) → 𝐴 ∈ (𝑋t 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wrex 2913  Vcvv 3200  cin 3573  wss 3574  (class class class)co 6650  t crest 16081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rest 16083
This theorem is referenced by:  bj-restv  33048  bj-resta  33049
  Copyright terms: Public domain W3C validator