Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rest0 Structured version   Visualization version   GIF version

Theorem bj-rest0 33046
Description: An elementwise intersection on a family containing the empty set contains the empty set. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-rest0 ((𝑋𝑉𝐴𝑊) → (∅ ∈ 𝑋 → ∅ ∈ (𝑋t 𝐴)))

Proof of Theorem bj-rest0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 in0 3968 . . . . 5 (𝐴 ∩ ∅) = ∅
2 incom 3805 . . . . 5 (𝐴 ∩ ∅) = (∅ ∩ 𝐴)
31, 2eqtr3i 2646 . . . 4 ∅ = (∅ ∩ 𝐴)
4 0ex 4790 . . . . 5 ∅ ∈ V
5 eleq1 2689 . . . . . 6 (𝑥 = ∅ → (𝑥𝑋 ↔ ∅ ∈ 𝑋))
6 ineq1 3807 . . . . . . 7 (𝑥 = ∅ → (𝑥𝐴) = (∅ ∩ 𝐴))
76eqeq2d 2632 . . . . . 6 (𝑥 = ∅ → (∅ = (𝑥𝐴) ↔ ∅ = (∅ ∩ 𝐴)))
85, 7anbi12d 747 . . . . 5 (𝑥 = ∅ → ((𝑥𝑋 ∧ ∅ = (𝑥𝐴)) ↔ (∅ ∈ 𝑋 ∧ ∅ = (∅ ∩ 𝐴))))
94, 8spcev 3300 . . . 4 ((∅ ∈ 𝑋 ∧ ∅ = (∅ ∩ 𝐴)) → ∃𝑥(𝑥𝑋 ∧ ∅ = (𝑥𝐴)))
103, 9mpan2 707 . . 3 (∅ ∈ 𝑋 → ∃𝑥(𝑥𝑋 ∧ ∅ = (𝑥𝐴)))
11 df-rex 2918 . . 3 (∃𝑥𝑋 ∅ = (𝑥𝐴) ↔ ∃𝑥(𝑥𝑋 ∧ ∅ = (𝑥𝐴)))
1210, 11sylibr 224 . 2 (∅ ∈ 𝑋 → ∃𝑥𝑋 ∅ = (𝑥𝐴))
13 elrest 16088 . 2 ((𝑋𝑉𝐴𝑊) → (∅ ∈ (𝑋t 𝐴) ↔ ∃𝑥𝑋 ∅ = (𝑥𝐴)))
1412, 13syl5ibr 236 1 ((𝑋𝑉𝐴𝑊) → (∅ ∈ 𝑋 → ∅ ∈ (𝑋t 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wrex 2913  cin 3573  c0 3915  (class class class)co 6650  t crest 16081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rest 16083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator