Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restb Structured version   Visualization version   Unicode version

Theorem bj-restb 33047
Description: An elementwise intersection by a set on a family containing a superset of that set contains that set. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restb  |-  ( X  e.  V  ->  (
( A  C_  B  /\  B  e.  X
)  ->  A  e.  ( Xt  A ) ) )

Proof of Theorem bj-restb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . 8  |-  ( A 
C_  B  ->  A  C_  B )
2 ssid 3624 . . . . . . . . 9  |-  A  C_  A
32a1i 11 . . . . . . . 8  |-  ( A 
C_  B  ->  A  C_  A )
41, 3ssind 3837 . . . . . . 7  |-  ( A 
C_  B  ->  A  C_  ( B  i^i  A
) )
5 inss2 3834 . . . . . . . 8  |-  ( B  i^i  A )  C_  A
65a1i 11 . . . . . . 7  |-  ( A 
C_  B  ->  ( B  i^i  A )  C_  A )
74, 6eqssd 3620 . . . . . 6  |-  ( A 
C_  B  ->  A  =  ( B  i^i  A ) )
8 eleq1 2689 . . . . . . . . . 10  |-  ( y  =  B  ->  (
y  e.  X  <->  B  e.  X ) )
9 ineq1 3807 . . . . . . . . . . 11  |-  ( y  =  B  ->  (
y  i^i  A )  =  ( B  i^i  A ) )
109eqeq2d 2632 . . . . . . . . . 10  |-  ( y  =  B  ->  ( A  =  ( y  i^i  A )  <->  A  =  ( B  i^i  A ) ) )
118, 10anbi12d 747 . . . . . . . . 9  |-  ( y  =  B  ->  (
( y  e.  X  /\  A  =  (
y  i^i  A )
)  <->  ( B  e.  X  /\  A  =  ( B  i^i  A
) ) ) )
1211spcegv 3294 . . . . . . . 8  |-  ( B  e.  X  ->  (
( B  e.  X  /\  A  =  ( B  i^i  A ) )  ->  E. y ( y  e.  X  /\  A  =  ( y  i^i 
A ) ) ) )
1312expd 452 . . . . . . 7  |-  ( B  e.  X  ->  ( B  e.  X  ->  ( A  =  ( B  i^i  A )  ->  E. y ( y  e.  X  /\  A  =  ( y  i^i  A
) ) ) ) )
1413pm2.43i 52 . . . . . 6  |-  ( B  e.  X  ->  ( A  =  ( B  i^i  A )  ->  E. y
( y  e.  X  /\  A  =  (
y  i^i  A )
) ) )
157, 14mpan9 486 . . . . 5  |-  ( ( A  C_  B  /\  B  e.  X )  ->  E. y ( y  e.  X  /\  A  =  ( y  i^i 
A ) ) )
16 df-rex 2918 . . . . 5  |-  ( E. y  e.  X  A  =  ( y  i^i 
A )  <->  E. y
( y  e.  X  /\  A  =  (
y  i^i  A )
) )
1715, 16sylibr 224 . . . 4  |-  ( ( A  C_  B  /\  B  e.  X )  ->  E. y  e.  X  A  =  ( y  i^i  A ) )
1817adantl 482 . . 3  |-  ( ( X  e.  V  /\  ( A  C_  B  /\  B  e.  X )
)  ->  E. y  e.  X  A  =  ( y  i^i  A
) )
19 ssexg 4804 . . . 4  |-  ( ( A  C_  B  /\  B  e.  X )  ->  A  e.  _V )
20 elrest 16088 . . . 4  |-  ( ( X  e.  V  /\  A  e.  _V )  ->  ( A  e.  ( Xt  A )  <->  E. y  e.  X  A  =  ( y  i^i  A
) ) )
2119, 20sylan2 491 . . 3  |-  ( ( X  e.  V  /\  ( A  C_  B  /\  B  e.  X )
)  ->  ( A  e.  ( Xt  A )  <->  E. y  e.  X  A  =  ( y  i^i  A
) ) )
2218, 21mpbird 247 . 2  |-  ( ( X  e.  V  /\  ( A  C_  B  /\  B  e.  X )
)  ->  A  e.  ( Xt  A ) )
2322ex 450 1  |-  ( X  e.  V  ->  (
( A  C_  B  /\  B  e.  X
)  ->  A  e.  ( Xt  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574  (class class class)co 6650   ↾t crest 16081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rest 16083
This theorem is referenced by:  bj-restv  33048  bj-resta  33049
  Copyright terms: Public domain W3C validator