Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1118 Structured version   Visualization version   Unicode version

Theorem bnj1118 31052
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1118.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj1118.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj1118.5  |-  ( ta  <->  ( B  e.  _V  /\  TrFo ( B ,  A ,  R )  /\  pred ( X ,  A ,  R )  C_  B
) )
bnj1118.7  |-  D  =  ( om  \  { (/)
} )
bnj1118.18  |-  ( si  <->  ( ( j  e.  n  /\  j  _E  i
)  ->  et' ) )
bnj1118.19  |-  ( ph0  <->  (
i  e.  n  /\  si 
/\  f  e.  K  /\  i  e.  dom  f ) )
bnj1118.26  |-  ( et'  <->  (
( f  e.  K  /\  j  e.  dom  f )  ->  (
f `  j )  C_  B ) )
Assertion
Ref Expression
bnj1118  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( f `  i
)  C_  B )
Distinct variable groups:    A, i,
j, y    y, B    D, j    R, i, j, y   
f, i, j, y   
i, n, j
Allowed substitution hints:    ph( y, f, i, j, n)    ps( y, f, i, j, n)    ch( y, f, i, j, n)    th( y, f, i, j, n)    ta( y,
f, i, j, n)    si( y, f, i, j, n)    A( f, n)    B( f, i, j, n)    D( y, f, i, n)    R( f, n)    K( y, f, i, j, n)    X( y, f, i, j, n)    et'( y, f, i, j, n)    ph0( y, f, i, j, n)

Proof of Theorem bnj1118
StepHypRef Expression
1 bnj1118.3 . . . 4  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
2 bnj1118.7 . . . 4  |-  D  =  ( om  \  { (/)
} )
3 bnj1118.18 . . . 4  |-  ( si  <->  ( ( j  e.  n  /\  j  _E  i
)  ->  et' ) )
4 bnj1118.19 . . . 4  |-  ( ph0  <->  (
i  e.  n  /\  si 
/\  f  e.  K  /\  i  e.  dom  f ) )
5 bnj1118.26 . . . 4  |-  ( et'  <->  (
( f  e.  K  /\  j  e.  dom  f )  ->  (
f `  j )  C_  B ) )
61, 2, 3, 4, 5bnj1110 31050 . . 3  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( j  e.  n  /\  i  =  suc  j  /\  ( f `  j )  C_  B
) )
7 ancl 569 . . 3  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( j  e.  n  /\  i  =  suc  j  /\  (
f `  j )  C_  B ) )  -> 
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  /\  ( j  e.  n  /\  i  =  suc  j  /\  ( f `  j )  C_  B
) ) ) )
86, 7bnj101 30789 . 2  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  /\  ( j  e.  n  /\  i  =  suc  j  /\  ( f `  j )  C_  B
) ) )
9 simpr2 1068 . . . 4  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  /\  ( j  e.  n  /\  i  =  suc  j  /\  (
f `  j )  C_  B ) )  -> 
i  =  suc  j
)
101bnj1254 30880 . . . . . . 7  |-  ( ch 
->  ps )
11103ad2ant3 1084 . . . . . 6  |-  ( ( th  /\  ta  /\  ch )  ->  ps )
1211ad2antrl 764 . . . . 5  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ps )
1312adantr 481 . . . 4  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  /\  ( j  e.  n  /\  i  =  suc  j  /\  (
f `  j )  C_  B ) )  ->  ps )
141bnj1232 30874 . . . . . . . . 9  |-  ( ch 
->  n  e.  D
)
15143ad2ant3 1084 . . . . . . . 8  |-  ( ( th  /\  ta  /\  ch )  ->  n  e.  D )
1615ad2antrl 764 . . . . . . 7  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  n  e.  D )
1716adantr 481 . . . . . 6  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  /\  ( j  e.  n  /\  i  =  suc  j  /\  (
f `  j )  C_  B ) )  ->  n  e.  D )
18 simpr1 1067 . . . . . 6  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  /\  ( j  e.  n  /\  i  =  suc  j  /\  (
f `  j )  C_  B ) )  -> 
j  e.  n )
192bnj923 30838 . . . . . . . 8  |-  ( n  e.  D  ->  n  e.  om )
2019anim1i 592 . . . . . . 7  |-  ( ( n  e.  D  /\  j  e.  n )  ->  ( n  e.  om  /\  j  e.  n ) )
2120ancomd 467 . . . . . 6  |-  ( ( n  e.  D  /\  j  e.  n )  ->  ( j  e.  n  /\  n  e.  om ) )
2217, 18, 21syl2anc 693 . . . . 5  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  /\  ( j  e.  n  /\  i  =  suc  j  /\  (
f `  j )  C_  B ) )  -> 
( j  e.  n  /\  n  e.  om ) )
23 elnn 7075 . . . . 5  |-  ( ( j  e.  n  /\  n  e.  om )  ->  j  e.  om )
2422, 23syl 17 . . . 4  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  /\  ( j  e.  n  /\  i  =  suc  j  /\  (
f `  j )  C_  B ) )  -> 
j  e.  om )
254bnj1232 30874 . . . . . 6  |-  ( ph0  ->  i  e.  n )
2625adantl 482 . . . . 5  |-  ( ( ( th  /\  ta  /\ 
ch )  /\  ph0 )  ->  i  e.  n )
2726ad2antlr 763 . . . 4  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  /\  ( j  e.  n  /\  i  =  suc  j  /\  (
f `  j )  C_  B ) )  -> 
i  e.  n )
289, 13, 24, 27bnj951 30846 . . 3  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  /\  ( j  e.  n  /\  i  =  suc  j  /\  (
f `  j )  C_  B ) )  -> 
( i  =  suc  j  /\  ps  /\  j  e.  om  /\  i  e.  n ) )
29 bnj1118.5 . . . . . . 7  |-  ( ta  <->  ( B  e.  _V  /\  TrFo ( B ,  A ,  R )  /\  pred ( X ,  A ,  R )  C_  B
) )
3029simp2bi 1077 . . . . . 6  |-  ( ta 
->  TrFo ( B ,  A ,  R )
)
31303ad2ant2 1083 . . . . 5  |-  ( ( th  /\  ta  /\  ch )  ->  TrFo ( B ,  A ,  R ) )
3231ad2antrl 764 . . . 4  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  TrFo ( B ,  A ,  R
) )
33 simp3 1063 . . . 4  |-  ( ( j  e.  n  /\  i  =  suc  j  /\  ( f `  j
)  C_  B )  ->  ( f `  j
)  C_  B )
3432, 33anim12i 590 . . 3  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  /\  ( j  e.  n  /\  i  =  suc  j  /\  (
f `  j )  C_  B ) )  -> 
(  TrFo ( B ,  A ,  R )  /\  ( f `  j
)  C_  B )
)
35 bnj256 30772 . . . . 5  |-  ( ( i  =  suc  j  /\  ps  /\  j  e. 
om  /\  i  e.  n )  <->  ( (
i  =  suc  j  /\  ps )  /\  (
j  e.  om  /\  i  e.  n )
) )
36 bnj1118.2 . . . . . . . . . 10  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
3736bnj1112 31051 . . . . . . . . 9  |-  ( ps  <->  A. j ( ( j  e.  om  /\  suc  j  e.  n )  ->  ( f `  suc  j )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R ) ) )
3837biimpi 206 . . . . . . . 8  |-  ( ps 
->  A. j ( ( j  e.  om  /\  suc  j  e.  n
)  ->  ( f `  suc  j )  = 
U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) ) )
393819.21bi 2059 . . . . . . 7  |-  ( ps 
->  ( ( j  e. 
om  /\  suc  j  e.  n )  ->  (
f `  suc  j )  =  U_ y  e.  ( f `  j
)  pred ( y ,  A ,  R ) ) )
40 eleq1 2689 . . . . . . . . 9  |-  ( i  =  suc  j  -> 
( i  e.  n  <->  suc  j  e.  n ) )
4140anbi2d 740 . . . . . . . 8  |-  ( i  =  suc  j  -> 
( ( j  e. 
om  /\  i  e.  n )  <->  ( j  e.  om  /\  suc  j  e.  n ) ) )
42 fveq2 6191 . . . . . . . . 9  |-  ( i  =  suc  j  -> 
( f `  i
)  =  ( f `
 suc  j )
)
4342eqeq1d 2624 . . . . . . . 8  |-  ( i  =  suc  j  -> 
( ( f `  i )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R )  <->  ( f `  suc  j )  = 
U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) ) )
4441, 43imbi12d 334 . . . . . . 7  |-  ( i  =  suc  j  -> 
( ( ( j  e.  om  /\  i  e.  n )  ->  (
f `  i )  =  U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) )  <->  ( ( j  e.  om  /\  suc  j  e.  n )  ->  ( f `  suc  j )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R ) ) ) )
4539, 44syl5ibr 236 . . . . . 6  |-  ( i  =  suc  j  -> 
( ps  ->  (
( j  e.  om  /\  i  e.  n )  ->  ( f `  i )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R ) ) ) )
4645imp31 448 . . . . 5  |-  ( ( ( i  =  suc  j  /\  ps )  /\  ( j  e.  om  /\  i  e.  n ) )  ->  ( f `  i )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R ) )
4735, 46sylbi 207 . . . 4  |-  ( ( i  =  suc  j  /\  ps  /\  j  e. 
om  /\  i  e.  n )  ->  (
f `  i )  =  U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) )
48 df-bnj19 30763 . . . . . . 7  |-  (  TrFo ( B ,  A ,  R )  <->  A. y  e.  B  pred ( y ,  A ,  R
)  C_  B )
49 ssralv 3666 . . . . . . 7  |-  ( ( f `  j ) 
C_  B  ->  ( A. y  e.  B  pred ( y ,  A ,  R )  C_  B  ->  A. y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) 
C_  B ) )
5048, 49syl5bi 232 . . . . . 6  |-  ( ( f `  j ) 
C_  B  ->  (  TrFo ( B ,  A ,  R )  ->  A. y  e.  ( f `  j
)  pred ( y ,  A ,  R ) 
C_  B ) )
5150impcom 446 . . . . 5  |-  ( ( 
TrFo ( B ,  A ,  R )  /\  ( f `  j
)  C_  B )  ->  A. y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) 
C_  B )
52 iunss 4561 . . . . 5  |-  ( U_ y  e.  ( f `  j )  pred (
y ,  A ,  R )  C_  B  <->  A. y  e.  ( f `
 j )  pred ( y ,  A ,  R )  C_  B
)
5351, 52sylibr 224 . . . 4  |-  ( ( 
TrFo ( B ,  A ,  R )  /\  ( f `  j
)  C_  B )  ->  U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) 
C_  B )
54 sseq1 3626 . . . . 5  |-  ( ( f `  i )  =  U_ y  e.  ( f `  j
)  pred ( y ,  A ,  R )  ->  ( ( f `
 i )  C_  B 
<-> 
U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) 
C_  B ) )
5554biimpar 502 . . . 4  |-  ( ( ( f `  i
)  =  U_ y  e.  ( f `  j
)  pred ( y ,  A ,  R )  /\  U_ y  e.  ( f `  j
)  pred ( y ,  A ,  R ) 
C_  B )  -> 
( f `  i
)  C_  B )
5647, 53, 55syl2an 494 . . 3  |-  ( ( ( i  =  suc  j  /\  ps  /\  j  e.  om  /\  i  e.  n )  /\  (  TrFo ( B ,  A ,  R )  /\  (
f `  j )  C_  B ) )  -> 
( f `  i
)  C_  B )
5728, 34, 56syl2anc 693 . 2  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  /\  ( j  e.  n  /\  i  =  suc  j  /\  (
f `  j )  C_  B ) )  -> 
( f `  i
)  C_  B )
588, 57bnj1023 30851 1  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( f `  i
)  C_  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177   U_ciun 4520   class class class wbr 4653    _E cep 5028   dom cdm 5114   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065    /\ w-bnj17 30752    predc-bnj14 30754    TrFow-bnj19 30762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fn 5891  df-fv 5896  df-om 7066  df-bnj17 30753  df-bnj19 30763
This theorem is referenced by:  bnj1030  31055
  Copyright terms: Public domain W3C validator