| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1118 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1118.2 |
|
| bnj1118.3 |
|
| bnj1118.5 |
|
| bnj1118.7 |
|
| bnj1118.18 |
|
| bnj1118.19 |
|
| bnj1118.26 |
|
| Ref | Expression |
|---|---|
| bnj1118 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1118.3 |
. . . 4
| |
| 2 | bnj1118.7 |
. . . 4
| |
| 3 | bnj1118.18 |
. . . 4
| |
| 4 | bnj1118.19 |
. . . 4
| |
| 5 | bnj1118.26 |
. . . 4
| |
| 6 | 1, 2, 3, 4, 5 | bnj1110 31050 |
. . 3
|
| 7 | ancl 569 |
. . 3
| |
| 8 | 6, 7 | bnj101 30789 |
. 2
|
| 9 | simpr2 1068 |
. . . 4
| |
| 10 | 1 | bnj1254 30880 |
. . . . . . 7
|
| 11 | 10 | 3ad2ant3 1084 |
. . . . . 6
|
| 12 | 11 | ad2antrl 764 |
. . . . 5
|
| 13 | 12 | adantr 481 |
. . . 4
|
| 14 | 1 | bnj1232 30874 |
. . . . . . . . 9
|
| 15 | 14 | 3ad2ant3 1084 |
. . . . . . . 8
|
| 16 | 15 | ad2antrl 764 |
. . . . . . 7
|
| 17 | 16 | adantr 481 |
. . . . . 6
|
| 18 | simpr1 1067 |
. . . . . 6
| |
| 19 | 2 | bnj923 30838 |
. . . . . . . 8
|
| 20 | 19 | anim1i 592 |
. . . . . . 7
|
| 21 | 20 | ancomd 467 |
. . . . . 6
|
| 22 | 17, 18, 21 | syl2anc 693 |
. . . . 5
|
| 23 | elnn 7075 |
. . . . 5
| |
| 24 | 22, 23 | syl 17 |
. . . 4
|
| 25 | 4 | bnj1232 30874 |
. . . . . 6
|
| 26 | 25 | adantl 482 |
. . . . 5
|
| 27 | 26 | ad2antlr 763 |
. . . 4
|
| 28 | 9, 13, 24, 27 | bnj951 30846 |
. . 3
|
| 29 | bnj1118.5 |
. . . . . . 7
| |
| 30 | 29 | simp2bi 1077 |
. . . . . 6
|
| 31 | 30 | 3ad2ant2 1083 |
. . . . 5
|
| 32 | 31 | ad2antrl 764 |
. . . 4
|
| 33 | simp3 1063 |
. . . 4
| |
| 34 | 32, 33 | anim12i 590 |
. . 3
|
| 35 | bnj256 30772 |
. . . . 5
| |
| 36 | bnj1118.2 |
. . . . . . . . . 10
| |
| 37 | 36 | bnj1112 31051 |
. . . . . . . . 9
|
| 38 | 37 | biimpi 206 |
. . . . . . . 8
|
| 39 | 38 | 19.21bi 2059 |
. . . . . . 7
|
| 40 | eleq1 2689 |
. . . . . . . . 9
| |
| 41 | 40 | anbi2d 740 |
. . . . . . . 8
|
| 42 | fveq2 6191 |
. . . . . . . . 9
| |
| 43 | 42 | eqeq1d 2624 |
. . . . . . . 8
|
| 44 | 41, 43 | imbi12d 334 |
. . . . . . 7
|
| 45 | 39, 44 | syl5ibr 236 |
. . . . . 6
|
| 46 | 45 | imp31 448 |
. . . . 5
|
| 47 | 35, 46 | sylbi 207 |
. . . 4
|
| 48 | df-bnj19 30763 |
. . . . . . 7
| |
| 49 | ssralv 3666 |
. . . . . . 7
| |
| 50 | 48, 49 | syl5bi 232 |
. . . . . 6
|
| 51 | 50 | impcom 446 |
. . . . 5
|
| 52 | iunss 4561 |
. . . . 5
| |
| 53 | 51, 52 | sylibr 224 |
. . . 4
|
| 54 | sseq1 3626 |
. . . . 5
| |
| 55 | 54 | biimpar 502 |
. . . 4
|
| 56 | 47, 53, 55 | syl2an 494 |
. . 3
|
| 57 | 28, 34, 56 | syl2anc 693 |
. 2
|
| 58 | 8, 57 | bnj1023 30851 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fn 5891 df-fv 5896 df-om 7066 df-bnj17 30753 df-bnj19 30763 |
| This theorem is referenced by: bnj1030 31055 |
| Copyright terms: Public domain | W3C validator |