Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj168 Structured version   Visualization version   GIF version

Theorem bnj168 30798
Description: First-order logic and set theory. Revised to remove dependence on ax-reg 8497. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by NM, 21-Dec-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj168.1 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj168 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚𝐷 𝑛 = suc 𝑚)
Distinct variable group:   𝑚,𝑛
Allowed substitution hints:   𝐷(𝑚,𝑛)

Proof of Theorem bnj168
StepHypRef Expression
1 bnj168.1 . . . . . . . . . 10 𝐷 = (ω ∖ {∅})
21bnj158 30797 . . . . . . . . 9 (𝑛𝐷 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚)
32anim2i 593 . . . . . . . 8 ((𝑛 ≠ 1𝑜𝑛𝐷) → (𝑛 ≠ 1𝑜 ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
4 r19.42v 3092 . . . . . . . 8 (∃𝑚 ∈ ω (𝑛 ≠ 1𝑜𝑛 = suc 𝑚) ↔ (𝑛 ≠ 1𝑜 ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
53, 4sylibr 224 . . . . . . 7 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚 ∈ ω (𝑛 ≠ 1𝑜𝑛 = suc 𝑚))
6 neeq1 2856 . . . . . . . . . . 11 (𝑛 = suc 𝑚 → (𝑛 ≠ 1𝑜 ↔ suc 𝑚 ≠ 1𝑜))
76biimpac 503 . . . . . . . . . 10 ((𝑛 ≠ 1𝑜𝑛 = suc 𝑚) → suc 𝑚 ≠ 1𝑜)
8 df-1o 7560 . . . . . . . . . . . . 13 1𝑜 = suc ∅
98eqeq2i 2634 . . . . . . . . . . . 12 (suc 𝑚 = 1𝑜 ↔ suc 𝑚 = suc ∅)
10 nnon 7071 . . . . . . . . . . . . 13 (𝑚 ∈ ω → 𝑚 ∈ On)
11 0elon 5778 . . . . . . . . . . . . 13 ∅ ∈ On
12 suc11 5831 . . . . . . . . . . . . 13 ((𝑚 ∈ On ∧ ∅ ∈ On) → (suc 𝑚 = suc ∅ ↔ 𝑚 = ∅))
1310, 11, 12sylancl 694 . . . . . . . . . . . 12 (𝑚 ∈ ω → (suc 𝑚 = suc ∅ ↔ 𝑚 = ∅))
149, 13syl5rbb 273 . . . . . . . . . . 11 (𝑚 ∈ ω → (𝑚 = ∅ ↔ suc 𝑚 = 1𝑜))
1514necon3bid 2838 . . . . . . . . . 10 (𝑚 ∈ ω → (𝑚 ≠ ∅ ↔ suc 𝑚 ≠ 1𝑜))
167, 15syl5ibr 236 . . . . . . . . 9 (𝑚 ∈ ω → ((𝑛 ≠ 1𝑜𝑛 = suc 𝑚) → 𝑚 ≠ ∅))
1716ancld 576 . . . . . . . 8 (𝑚 ∈ ω → ((𝑛 ≠ 1𝑜𝑛 = suc 𝑚) → ((𝑛 ≠ 1𝑜𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅)))
1817reximia 3009 . . . . . . 7 (∃𝑚 ∈ ω (𝑛 ≠ 1𝑜𝑛 = suc 𝑚) → ∃𝑚 ∈ ω ((𝑛 ≠ 1𝑜𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅))
195, 18syl 17 . . . . . 6 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚 ∈ ω ((𝑛 ≠ 1𝑜𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅))
20 anass 681 . . . . . . 7 (((𝑛 ≠ 1𝑜𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅) ↔ (𝑛 ≠ 1𝑜 ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
2120rexbii 3041 . . . . . 6 (∃𝑚 ∈ ω ((𝑛 ≠ 1𝑜𝑛 = suc 𝑚) ∧ 𝑚 ≠ ∅) ↔ ∃𝑚 ∈ ω (𝑛 ≠ 1𝑜 ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
2219, 21sylib 208 . . . . 5 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚 ∈ ω (𝑛 ≠ 1𝑜 ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
23 simpr 477 . . . . 5 ((𝑛 ≠ 1𝑜 ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → (𝑛 = suc 𝑚𝑚 ≠ ∅))
2422, 23bnj31 30785 . . . 4 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚 ∈ ω (𝑛 = suc 𝑚𝑚 ≠ ∅))
25 df-rex 2918 . . . 4 (∃𝑚 ∈ ω (𝑛 = suc 𝑚𝑚 ≠ ∅) ↔ ∃𝑚(𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
2624, 25sylib 208 . . 3 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚(𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)))
27 simpr 477 . . . . . . 7 ((𝑛 = suc 𝑚𝑚 ≠ ∅) → 𝑚 ≠ ∅)
2827anim2i 593 . . . . . 6 ((𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → (𝑚 ∈ ω ∧ 𝑚 ≠ ∅))
291eleq2i 2693 . . . . . . 7 (𝑚𝐷𝑚 ∈ (ω ∖ {∅}))
30 eldifsn 4317 . . . . . . 7 (𝑚 ∈ (ω ∖ {∅}) ↔ (𝑚 ∈ ω ∧ 𝑚 ≠ ∅))
3129, 30bitr2i 265 . . . . . 6 ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) ↔ 𝑚𝐷)
3228, 31sylib 208 . . . . 5 ((𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → 𝑚𝐷)
33 simprl 794 . . . . 5 ((𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → 𝑛 = suc 𝑚)
3432, 33jca 554 . . . 4 ((𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → (𝑚𝐷𝑛 = suc 𝑚))
3534eximi 1762 . . 3 (∃𝑚(𝑚 ∈ ω ∧ (𝑛 = suc 𝑚𝑚 ≠ ∅)) → ∃𝑚(𝑚𝐷𝑛 = suc 𝑚))
3626, 35syl 17 . 2 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚(𝑚𝐷𝑛 = suc 𝑚))
37 df-rex 2918 . 2 (∃𝑚𝐷 𝑛 = suc 𝑚 ↔ ∃𝑚(𝑚𝐷𝑛 = suc 𝑚))
3836, 37sylibr 224 1 ((𝑛 ≠ 1𝑜𝑛𝐷) → ∃𝑚𝐷 𝑛 = suc 𝑚)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wrex 2913  cdif 3571  c0 3915  {csn 4177  Oncon0 5723  suc csuc 5725  ωcom 7065  1𝑜c1o 7553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-om 7066  df-1o 7560
This theorem is referenced by:  bnj600  30989
  Copyright terms: Public domain W3C validator